精英家教网 > 高中数学 > 题目详情
1.已知数列{an}是等差数列,其前n项和为Sn,且a1=1,S5=25,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前10项和等于(  )
A.$\frac{9}{19}$B.$\frac{10}{21}$C.$\frac{18}{19}$D.$\frac{20}{21}$

分析 利用等差数列的通项公式及其前n项和公式、“裂项求和”即可得出.

解答 解:设等差数列{an}的公差为d,∵a1=1,S5=25,
∴5×1+$\frac{5×4}{2}d$=25,解得d=2.
∴an=1+2(n-1)=2n-1.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前10项和=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{19}-\frac{1}{21})]$=$\frac{1}{2}(1-\frac{1}{21})$=$\frac{10}{21}$.
故选:B.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a>b>c,且a+b+c=0,求证:$\frac{\sqrt{{b}^{2}-ac}}{a}$<$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>b,则下列不等式中成立的是(  )
A.a2>b2B.ac>bcC.|a|>|b|D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>b≥2,现有下列不等式:
①b2<3b-a;②a3+b3>a2b+ab2;③ab>a+b;④$\frac{1}{2}$+$\frac{2}{ab}$>$\frac{1}{a}$+$\frac{1}{b}$.
其中正确的是(  )
A.②④B.①④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=ex,g(x)=ax2+bx+c.
(Ⅰ)$g(0)=1,g(1)=\frac{5}{2},g(-1)=\frac{1}{2}$.
(i)求g(x)的表达式;
(ii)令h(x)=f(x)-g(x),证明:函数h(x)恰有一个零点;
(Ⅱ)求证:$(1+\frac{1}{3})(1+\frac{1}{3^2})(1+\frac{1}{3^3})…(1+\frac{1}{3^n})<\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线G:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线H:y2=2px在第一象限相交于点A,且有相同的焦点F,AF⊥x轴,则双曲线G的离心率是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆C1:(x+1)2+(y+2)2=9与圆C2:(x-2)2+(y-2)2=4的位置关系为(  )
A.相交B.内切C.外切D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.知点F1(-1,0)和点F2(1,0),以F1、F2为焦点的椭圆和以线段F1F2为直径的圆于第一、三象限交于A,B两点,直线AB的斜率为k,若0<k≤$\sqrt{3}$,则此椭圆的离心率e的取值范围为[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sin(2x+$\frac{π}{6}$)=$\frac{3}{5}$,求cos2x的值.

查看答案和解析>>

同步练习册答案