精英家教网 > 高中数学 > 题目详情
13.已知函数y=${2}^{-{x}^{2}-x+2}$(x∈R),对于任意x恒有f(x)≤f(x0)成立,则x0=$-\frac{1}{2}$.

分析 由已知可得f(x0)为函数y=${2}^{-{x}^{2}-x+2}$的最大值,即当x=x0时,-x2-x+2取最大值,结合二次函数的图象和性质,可得答案.

解答 解:∵函数y=${2}^{-{x}^{2}-x+2}$(x∈R),对于任意x恒有f(x)≤f(x0)成立,
则f(x0)为函数y=${2}^{-{x}^{2}-x+2}$的最大值,
即当x=x0时,-x2-x+2取最大值,
则x0=$-\frac{1}{2}$,
故答案为:$-\frac{1}{2}$

点评 本题考查的知识点是指数函数的图象和性质,二次函数的图象和性质,是指数函数和二次函数的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在数列{bn}中,an+3=an+3(n∈N+),a1=1,Sn是其前n项和.记bn=$\root{n+a}{{c}^{{S}_{n}+a}}$(a≥0,c>0,c≠1).
(1)设数列{a3n-2}(n∈N+)的前n项和Tn,求Tn表达式;
(2)若S15=15a8=120,证明:{an}以为等差数列:
(3)若数列{bn}为等比数列,求数列{an}的通项公式,并求此时实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,复数$\frac{2}{1+i}$的共轭复数是(  )
A.1+iB.1-iC.2+2iD.2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A、B、C所对的边分别为a、b、c,已知sin(A-$\frac{π}{6}$)=cosA
(1)求角A的大小;
(2)若a=1,b+c=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$f(x)={e^{\frac{1}{2}x}}$(x-1)-ax+2a恰有小于1两个零点,则a的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(0,\frac{2}{{3\sqrt{e}}})$C.$(-∞,\frac{1}{2}]$D.$(-∞,\frac{2}{{3\sqrt{e}}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}是公差为正数的等差数列,a1+a4=12,a1•a4=27,数列{bn}的前n项和为Tn,且Tn=1-bn(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x3-x-a恰好有三个不同的零点,则这三个零点的和为(  )
A.1B.-1C.0D.与a有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C的参数方程为$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数),直线l平行于x轴,且过点(0,3),以原点O为极点,x铀的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程及直线l的参数方程;
(Ⅱ)过原点O的直线11交圆C于O,A,交直线l于B,求|OA|•|OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足不等式组$\left\{\begin{array}{l}{3x+y-8≤0}\\{x+2y-1≥0}\\{2x-y-2≥0}\end{array}\right.$,则x2+y2的最大值为(  )
A.8B.10C.2$\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案