精英家教网 > 高中数学 > 题目详情
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.
(Ⅰ)求证:l是⊙O的切线;
(Ⅱ)若⊙O的半径OA=5,AC=4,求CD的长.
考点:圆的切线的判定定理的证明,与圆有关的比例线段
专题:选作题,立体几何
分析:(Ⅰ)连接OP,由AC与BD都与直线l垂直,得到AC与BD平行,由AB与l不相交得到四边形ABDC为梯形,又O为AB中点,P为CD中点,所以OP为梯形的中位线,根据梯形中位线性质得到OP与BD平行,从而得到OP与l垂直,而P在圆上,故l为圆的切线;
(Ⅱ)过点A作AE⊥BD,垂足为E,求出BE,利用勾股定理,即可得出结论.
解答: (Ⅰ)证明:连接OP,因为AC⊥l,BD⊥l,
所以AC∥BD.
又OA=OB,PC=PD,
所以OP∥BD,从而OP⊥l.
因为P在⊙O上,所以l是⊙O的切线.
(Ⅱ)解:由上知OP=
1
2
(AC+BD),
所以BD=2OP-AC=6,
过点A作AE⊥BD,垂足为E,则BE=BD-AC=6-4=2,
在Rt△ABE中,AE=
AB2-BE2
=4
6

∴CD=4
6
点评:此题考查了切线的判定,梯形中位线性质及直线与圆的位置关系.证明切线时:有点连接圆心与这点,证明垂直;无点作垂线,证明垂线段等于圆的半径,是经常连接的辅助线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=
20
(n+1)2-1
,Sn是数列{an}的前n项和,则与S98最接近的整数是(  )
A、13B、14C、15D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,将所有这些乘积的和记为Tn,如:
T3=1×2+1×3+2×3=
1
2
[62-(12+22+32)]=11;
T4=1×2+1×3+1×4+2×3+2×4+3×4=
1
2
[102-(12+22+32+42)]=35;
T5=1×2+1×3+1×4+1×5+…4×5=
1
2
[152-(12+22+32+42+52)]=85.
则T7=
 
.(写出计算结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an+1=an+2n,n∈N+
(1)求证:a2是a1,a3的等比中项;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个简单几何体三视图的正视图与侧视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是(  )
A、
3
B、
4
3
3
C、
8
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=-
1
an+2
,a1=-
1
2

(1)求证{
1
an+1
}是等差数列;
(2)求数列{an}的通项公式;
(3)设Tn=an+an+1+…+a2n-1,若Tn≥p-n对任意的n∈N*恒成立,求p的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数.
(1)y=sin22x.
(2)y=e-xsin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,点M是棱AD的中点,点P是线段CD1上的动点,点Q是线段CM上的动点,设直线PQ与平面ABCD所成的角为θ,则tanθ的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x-a+log2x存在大于1的零点,则a的取值范围是(  )
A、[1,∞)
B、(1,+∞)
C、(0,+∞)
D、(-∞,1)

查看答案和解析>>

同步练习册答案