精英家教网 > 高中数学 > 题目详情
7.已知F1(-1,0),F2(1,0)为椭圆C的左、右焦点,且点Q(1,$\frac{2\sqrt{3}}{3}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设P(3,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,请问:直线AE与x轴是否相交于定点?若是,求出该定点;若否,说明理由.

分析 (1)设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),由题意利用椭圆定义及性质求出a,b,由此能求出椭圆C的方程.
(2)由题意知直线PB的斜率k(k≠0)存在,直线PB的方程为y=k(x-3),与椭圆联立得到(2+3k2)x2-18k2x+27k2-6=0,由此利用根的判别式、韦达定理、直线斜率,结合题设条件能求出直线AE与x轴相交于定点(1,0).

解答 解:(1)设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0).
由题意,2a=|QF1|+|QF2|=$\sqrt{{2}^{2}+(\frac{2}{\sqrt{3}})^{2}}$+$\frac{2}{\sqrt{3}}$=2$\sqrt{3}$,…(2分)
解得a=$\sqrt{3}$,b2=a2-c2=3-1=2.
故椭圆C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.…(4分)
(2)由题意知直线PB的斜率k(k≠0)存在,直线PB的方程为y=k(x-3).
设B(x1,y1),E(x2,y2).由题意A(x1,-y1),
由$\left\{\begin{array}{l}{y=k(x-3)}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y得:(2+3k2)x2-18k2x+27k2-6=0,…(6分)
由题意,判别式△=(-18k22-4(2+3k2)(27k2-6)>0,
由韦达定理,得${x}_{1}+{x}_{2}=\frac{18{k}^{2}}{2+3{k}^{2}}$,${x}_{1}{x}_{2}=\frac{27{k}^{2}-6}{2+3{k}^{2}}$,…(7分)
若直线AE与x轴相交于定点M(m,0),则A(x1,-y1)、M(m,0)、E(x2,y2)三点共线.
从而kAM=kAE,即$\frac{{y}_{1}}{m-{x}_{1}}$=$\frac{{y}_{1}+{y}_{2}}{{x}_{2}-{x}_{1}}$,…(8分)
解得m=$\frac{({x}_{2}-{x}_{1}){y}_{1}}{{y}_{1}+{y}_{1}}$+x1=$\frac{{x}_{2}{y}_{1}+{x}_{1}{y}_{2}}{{y}_{2}+{y}_{1}}$,…(9分)
∴$m=\frac{{x}_{2}{y}_{1}+{x}_{1}{y}_{2}}{{y}_{2}+{y}_{1}}$=$\frac{{x}_{2}•k({x}_{1}-3)+{x}_{1}•k({x}_{2}-3)}{k({x}_{2}-3)+k({x}_{1}-3)}$=$\frac{2{x}_{2}{x}_{1}-3({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}-6}$…(11分)
=$\frac{2•\frac{27{k}^{2}-6}{2+3{k}^{2}}-3•\frac{18{k}^{2}}{2+3{k}^{2}}}{\frac{18{k}^{2}}{2+3{k}^{2}}-6}$=1.…(13分)
∴直线AE与x轴相交于定点(1,0).…(14分)

点评 本题考查椭圆方程的求法,考查直线与x轴交点坐标的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、直线斜率等知识点的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若圆x2+y2+2x-4y=0关于直线3x+y+m=0对称,则实数m的值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是一个几何体的三视图,其俯视图是边长为3的正三角形,则该几何体的表面积为(  )
A.36B.36$+\frac{9\sqrt{3}}{4}$C.36$+\frac{9\sqrt{3}}{2}$D.18$+\frac{9\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C1:x2+y2=9与圆C2:(x-3)2+(y-4)2=r2(r>0)相外切.
(1)若圆C2关于直线l:$\frac{ax}{9}$-$\frac{by}{12}$=1对称,求由点M(a,b)向圆C2所作的切线长的最小值;
(2)若直线l1过点A(1,0),与圆C2相交于P、Q两点.且S${\;}_{△{C}_{2}PQ}$=2求此时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知F1(0,-1),F2(0,1)为椭圆Γ:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,过F1作两条倾斜角互补的直线l1,l2,l1,l2分别与椭圆Γ相交于A,B,C,D四点,且△ABF2的周长为8.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)求阴影部分S的最大值;
(Ⅲ)求证:直线AD与直线BC的交点是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两人下棋,两人和棋的概率是$\frac{1}{2}$,乙获胜的概率是$\frac{1}{3}$,则乙不输的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆O1:x2+y2-6x-4y-3=0和圆O2:x2+y2-4y=0的位置关系是(  )
A.相离B.相交C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PA=AD,点E为AB中点,点F在线段PD上,且PF:FD=1:3.
(1)证明平面PED⊥平面FAB;
(2)若PD=4,求三棱锥P-FAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,$\overline{x_1}$,$\overline{x{\;}_2}$分别表示甲、乙两名运动员这项测试成绩的平均数,$S_1^2$,$S_2^2$分别表示甲、乙两名运动员这项测试成绩的方差,则有(  )
A.$\overline{x_1}$>$\overline{x{\;}_2}$,$S_1^2$<$S_2^2$B.$\overline{x_1}$=$\overline{x{\;}_2}$,$S_1^2$>$S_2^2$
C.$\overline{x_1}$=$\overline{x{\;}_2}$,$S_1^2$=$S_2^2$D.$\overline{x_1}$=$\overline{x{\;}_2}$,$S_1^2$<$S_2^2$

查看答案和解析>>

同步练习册答案