精英家教网 > 高中数学 > 题目详情
(1)已知向量
a
b
c
满足
a
+
b
+
c
=0,且|
a
|=5,|
b
|=7,|
c
|=10,求
a
b
的夹角的余弦值;
(2)已知|
a
|=2,|
b
|=3,
a
b
的夹角为60°,若
a
b
与λ
a
+
b
的夹角为锐角,求实数λ的取值范围.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)设
AB
=
a
BC
=
b
CA
=
c
,由向量
a
b
c
满足
a
+
b
+
c
=0,且|
a
|=5,|
b
|=7,|
c
|=10,可得:三点ABC可组成三角形,利用余弦定理即可得出.
(2)由|
a
|=2,|
b
|=3,
a
b
的夹角为60°,可得
a
b
=2×3×cos60°=3.由
a
b
与λ
a
+
b
的夹角为锐角,可得:(
a
b
)•(λ
a
+
b
)>0,且
a
b
与λ
a
+
b
不能同向共线.解出即可.
解答: 解:(1)设
AB
=
a
BC
=
b
CA
=
c
,∵向量
a
b
c
满足
a
+
b
+
c
=0,且|
a
|=5,|
b
|=7,|
c
|=10,
∴三点ABC可组成三角形,
∴cosB=
52+72-102
2×5×7
=-
13
35

a
b
的夹角的余弦值为
13
35

(2)∵|
a
|=2,|
b
|=3,
a
b
的夹角为60°,
a
b
=2×3×cos60°=3.
a
b
与λ
a
+
b
的夹角为锐角,
∴(
a
b
)•(λ
a
+
b
)>0,且
a
b
与λ
a
+
b
不能同向共线.
化为3λ2+13λ+3>0,
a
b
≠k(λ
a
+
b
)
,k<0.
解得λ>
133
-13
6
λ<
-13-
133
6
,且λ≠1.
∴实数λ的取值范围为λ>
133
-13
6
λ<
-13-
133
6
,且λ≠1.
点评:本题考查了向量三角形法则、向量共线定理、数量积运算性质、向量夹角公式、余弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)的焦点为F,直线l:y=3与C交于A、B两点,l与y轴交于点N,且∠AFB=120°.
(1)求抛物线C的方程;
(2)当0<p<6时,设C在点Q处的切线与直线l、x轴依次交于M、D两点,以MN为直径作圆G,过D作圆G的切线,切点为H,试探究;当点Q在C上移动(Q与原点不重合)时,线段DH的长度是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且an≠0(n∈N*),S1,S2,…,Sn,…,成等比数列,试问数列a2,a3,a4,…,an成等比数列吗?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则向量
a
b
的夹角是(  )
A、90°B、120°
C、135°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(3,-sin2x),
b
=(cos2x,
3
),f(x)=
a
b

(1)求f(x)的最小正周期;
(2)求f(x)的最大值及取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}中,a2+a3+a4=28,且a3+2是a2,a4的等差中项,
(1)求an
(2)设bn=log
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=3x+3,求;
(1)直线l关于点M(3,2),对称的直线的方程.
(2)直线x-y-2=0关于l对称的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,1),
b
=(cosx-
1
2
)
,函数f(x)=
a
•(
a
-
b
)
,下列四个命题:
①f(x)是周期函数,其最小正周期为2π;
②当x=
π
8
时,f(x)有最小值2-
2
2

[-
8
,-
8
]
是函数f(x)的一个单调递增区间;
④点(-
π
8
,2)
是函数f(x)的一个对称中心.
正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=x+yi(x,y∈R),且x,y满足2x+y+xi=8+(1+y)i,求复数z.

查看答案和解析>>

同步练习册答案