精英家教网 > 高中数学 > 题目详情
3.已知$sinα+cosα=\frac{1}{5}$,0≤α≤π,则$\sqrt{2}sin(α-\frac{π}{4})$的值为(  )
A.$\frac{1}{5}$B.$\frac{7}{5}$C.$±\frac{1}{5}$D.$±\frac{7}{5}$

分析 把sinα+cosα=$\frac{1}{5}$(0≤α≤π) 平方可得 sinα•cosα=$\frac{12}{25}$,故α 为钝角,可得sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,然后利用两角和差的正弦公式求解即可.

解答 解:∵$sinα+cosα=\frac{1}{5}$,0≤α≤π,
平方可得sinα•cosα=$\frac{12}{25}$,故α 为钝角.
∴sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
则$\sqrt{2}sin(α-\frac{π}{4})$=$\sqrt{2}×\frac{\sqrt{2}}{2}(sinα-cosα)$=$\frac{7}{5}$.
故选:B.

点评 本题考查两角和差的正弦公式,同角三角函数的基本关系的应用,求出sinα,cosα,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,则f(0)+f(-3)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$,$\overrightarrow{b}$为两个非零向量,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,($\overrightarrow{a}$+$\overrightarrow{b}$)$⊥\overrightarrow{b}$.
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角
(Ⅱ)求|3$\overrightarrow{a}$$-2\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则实数a的取值范围是(-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知以下四个结论:
①函数y=tanx图象的一个对称中心为($\frac{π}{2}$,0);
②函数y=|sinx+1|的最小正周期为π;
③y=sin(2x+$\frac{π}{3}$)的表达式可以改写为f(x)=cos($\frac{7}{6}$π-2x);
④若A+B=$\frac{π}{4}$,则(1+tanA)(1+tanB)=2.
其中,正确的结论是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
B.如果命题“¬p”与命题“p∨q”都是真命题,则命题q一定是真命题
C.若命题:?x0∈R,${x_0}^2-{x_0}+1<0$,则¬p:?x∈R,x2-x+1≥0
D.“$sinθ=\frac{1}{2}$”是“$θ=\frac{π}{6}$”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的离心率为$\frac{1}{2}$,则直线y=6x与C的其中一个交点到y轴的距离为$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(2)=-1,则满足-1≤f(x-2)≤1的x的取值范围是(  )
A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|2x>1},B={x∈N|x<4},则A∩B=(  )
A.{0,1}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

同步练习册答案