分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可.
解答 解:∵f(x)=-sinx-$\sqrt{3}$cosx-x,x∈[0,$\frac{π}{2}$],
∴f′(x)=$\sqrt{3}$sinx-cosx-1=2sin(x-$\frac{π}{6}$)-1,
令f′(x)>0,解得:$\frac{π}{3}$<x≤$\frac{π}{2}$,
令f′(x)<0,解得:0≤x<$\frac{π}{3}$,
∴f(x)在[0,$\frac{π}{3}$)递减,在($\frac{π}{3}$,$\frac{π}{2}$]递增,
∴f(x)min=f($\frac{π}{3}$)=-$\sqrt{3}$-$\frac{π}{3}$,
故答案为:-$\sqrt{3}$-$\frac{π}{3}$.
点评 本题考查了三角函数的性质,考查函数的单调性、最值问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{25}$ | B. | $\frac{8}{5}$ | C. | $\frac{8}{25}$ | D. | $\frac{{1-2\sqrt{6}}}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com