精英家教网 > 高中数学 > 题目详情
命题“?x∈R,x2+x-2≤0”的否定是
 
考点:命题的否定
专题:简易逻辑
分析:直接利用特称命题的否定是全称命题写出结果即可.
解答: 解:因为特称命题的否定是全称命题.所以,命题“?x∈R,x2+x-2>0”的否定为:?x∈R,x2+x-2>0.
故答案为:?x∈R,x2+x-2>0.
点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的体积为(  )
A、48-
3
B、
32π
3
C、64-
16π
3
D、
64π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c都是实数.已知命题p:若a>b,则a+c>b+c;命题q:若a>b>0,则ac>bc.则下列命题中为真命题的是(  )
A、(?p)∨q
B、p∧q
C、(?p)∧(?q)
D、(?p)∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:

分别求出满足下列条件的实数x,y的值
(1)2x-1+(y+1)i=x-y+(-x-y)i;
(2)
x2-x-6
x
+(x2-2x-3)i=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|(k+1)x2+x-k=0}有且仅有两个子集,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
1-x
的定义域为M,函数g(x)=1n(1+x)的定义域为N,则(  )
A、M∩N=(-1,1]
B、CRN=(-∞,-1)
C、M∩N=R
D、∁RM=[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{an}对任意的正整数n,都有|an+1|+|an|=d(d为常数),则称{an}为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2,“绝对公和”d=2,则其前2013项和S2013的最小值为(  )
A、-2008
B、-2010
C、-2012
D、-2014

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-1-xlnx,(x>0)
(Ⅰ)求函数f(x)的最大值
(Ⅱ)设g(x)=
lnx
x-1
(x>1),试分析函数g(x)的单调性
(Ⅲ)利用(Ⅱ)的结论,证明:当n>m>0时,(1+n)m<(1+m)n

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“若可导函数f(x)是奇函数,则f′(x)是偶函数”的否命题是(  )
A、若可导函数f(x)是偶函数,则f′(x)是奇函数
B、若可导函数f(x)是奇函数,则f′(x)是奇函数
C、若可导函数f(x)是奇函数,则f′(x)不是偶函数
D、若可导函数f(x)不是奇函数,则f′(x)不是偶函数

查看答案和解析>>

同步练习册答案