精英家教网 > 高中数学 > 题目详情
2.已知sin(π-α)-2cosα=0.
(1)若sinα<0,求cosα的值;
(2)求2sinαcosα-cos2α的值.

分析 (1)利用诱导公式化简已知条件,通过三角函数符号,求解即可.

解答 解:(1)sin(π-α)-2cosα=0.可得tanα=2.
sinα<0,则cosα<0,sin2α+cos2α=1,
可得5cos2α=1,
解得cosα=-$\frac{\sqrt{5}}{5}$.
(2)2sinαcosα-cos2α=$\frac{{2sinαcosα-cos}^{2}α}{{sin}^{2}α+{cos}^{2}α}$=$\frac{2tanα-1}{{tan}^{2}α+1}$=$\frac{3}{5}$.

点评 本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知a∈R且a≠0,下列各式中正确的是(  )
A.a+$\frac{1}{a}$≥2B.a+$\frac{1}{a}$≤-2C.a+$\frac{1}{a}$=2D.a+$\frac{1}{a}$≤-2或a+$\frac{1}{a}$≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,∠A=90°,AB=3,AC=2,$\overrightarrow{CD}$=2$\overrightarrow{DB}$,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角三角形△ABC中,若sin(A+B)=$\frac{3}{5}$,sin(A-B)=$\frac{1}{5}$
(1)求$\frac{tanA}{tanB}$的值
(2)求tanC,tanA,tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等比数列,满足a4+a7=2,a2•a9=-8,则a1+a13的值为(  )
A.7B.17C.-$\frac{17}{2}$D.17或-$\frac{17}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(Ⅰ)已知i是虚数单位,a,b∈R,复数z=1+ai满足z2+z=1+bi,求a2+b2的值.
(Ⅱ)设函数f(x)=(x2+2x-2)ex(x∈R),求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.-$\frac{7π}{5}$是第(  )象限的角.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{27-{3}^{2x+1}}$的定义域是(-∞,1](用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{x}^{2}-ax+{b}^{2}}{x+a}$(x∈[0,+∞),其中a>0,b∈R.记M(a,b)为f(x)的最小值.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求a的取值范围,使得存在b,满足M(a,b)=-1.

查看答案和解析>>

同步练习册答案