精英家教网 > 高中数学 > 题目详情
16.已知直线2x-(m+$\frac{1}{3m}$)y-2=0(m>0)与直线l:x=-1,抛物线C:y2=4x及x轴分别相交于A,B,F三点,点F是抛物线的焦点,若$\overrightarrow{AB}$=2$\overrightarrow{BF}$,则m=$\frac{\sqrt{3}}{3}$.

分析 过点B作BD⊥l于D,则|BD|=|BF|,利用$\overrightarrow{AB}$=2$\overrightarrow{BF}$,可得∠ABD=60°,$\frac{2}{m+\frac{1}{3m}}$=tan60°,即可求出m的值.

解答 解:由题意,点F及直线l分别是抛物线C的焦点和准线,
过点B作BD⊥l于D,则|BD|=|BF|,
∵$\overrightarrow{AB}$=2$\overrightarrow{BF}$,∴∠ABD=60°,
∴$\frac{2}{m+\frac{1}{3m}}$=tan60°
∴解得m=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查抛物线的性质,考查向量知识的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.中心在原点,且与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1有相同焦点的等轴双曲线的标准方程是(  )
A.y2-x2=1B.x2-y2=1C.x2-y2=2D.y2-x2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用“五点法”作出函数:y=$\sqrt{1-si{n}^{2}x}$=|cosx|(x∈[0,2π])

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.96B.48C.32D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)
(1)若b=2a,a<0,写出函数f(x)的单调递减区间,并证明你的结论;
(2)设a,c为常数,若存在实数b使得函数f(x)在区间(0,1)内有两个不同的零点,求实数b的取值范围(用a,c表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.最近高考改革方案已在上海和江苏开始实施,某教育机构为了了解我省广大师生对新高考改革的看法,对某市部分学校500名师生进行调查,统计结果如下:
 赞成改革不赞成改革无所谓
教师120y40
学生xz130
在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且z=2y.
(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?
(2)在(1)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少一名教师被选出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若将函数y=sin2x的图象向左平移$\frac{π}{6}$个单位后,得到的图象(  )
A.关于直线x=$\frac{π}{12}$对称B.关于直线x=$\frac{π}{6}$对称
C.关于点($\frac{π}{12}$,0)对称D.关于点($\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=$\frac{1-2i}{1+i}$(i为虚数单位)在复平面上对应的点的坐标为(  )
A.(-$\frac{1}{2}$,-$\frac{3}{2}$i)B.(-$\frac{1}{2}$,-$\frac{3}{2}$)C.(-$\frac{3}{2}$,-$\frac{1}{2}$i)D.($\frac{3}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.多面体的三视图如图所示,则该多面体的体积为(  )(单位cm)
A.$\frac{{16\sqrt{2}}}{3}$B.$\frac{32}{3}$C.$16\sqrt{2}$D.32

查看答案和解析>>

同步练习册答案