精英家教网 > 高中数学 > 题目详情
15.不等式2x2-3x+1≥0的解集是$({-∞,\frac{1}{2}}]∪[{1,+∞})$.

分析 直接利用二次不等式的解法求解即可.

解答 解:由2x2-3x+1≥0得:$x≤\frac{1}{2}$或x≥1,所以不等式2x2-3x+1≥0的解集是$({-∞,\frac{1}{2}}]∪[{1,+∞})$.
故答案为:$({-∞,\frac{1}{2}}]∪[{1,+∞})$.

点评 本题考查二次不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn,满足${S_n}=-2{a_n}+1-\frac{1}{3^n}$,${c_n}={({\frac{3}{2}})^n}{a_n}$,则数列{cn}的通项公式${c_n}=\frac{2}{3}-\frac{1}{{3•{2^{n-1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x3-2ax,若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则a的取值范围为(-∞,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2x2-mx+2,当x∈[2,+∞]时,f(x)单调递增函数,则m的取值范围是(  )
A.(-∞,+∞)B.[8,+∞)C.(-∞,-8]D.(-∞,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(I)利用向量数量积证明:对任意α,β∈R,都有cos(α-β)=cosαcosβ+sinαsinβ;
(II)利用(I)的结论,并给结合诱导公式证明:对任意α,β∈R,都有sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设抛物线C1:y2=2x与双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的焦点重合,且双曲线C2的渐近线为$y=±\sqrt{3}x$,则双曲线C2的实轴长为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线C:y2=4x及支线l:x-y+4=0,P是抛物线C上的动点,记P到y轴的距离为d1,p到l的距离为d2,则d1+d2的最小值为$\frac{5\sqrt{2}}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$,已知$\overrightarrow{a}•\overrightarrow{b}$+$\overrightarrow{c}•\overrightarrow{h}$=$\overrightarrow{b}•\overrightarrow{c}$+$\overrightarrow{a}•$$\overrightarrow{h}$=$\overrightarrow{c}•\overrightarrow{a}$+$\overrightarrow{b}•\overrightarrow{h}$,$|{\overrightarrow{AH}}|=1$,$|{\overrightarrow{BH}}|=\sqrt{2}$,$|{\overrightarrow{BC}}|=\sqrt{3}$,点O是△ABC外接圆的圆心,则△AOB,△BOC,△AOC的面积之比为1:$\sqrt{3}$:2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知公差不为零的等差数列{an},前n项和为Sn,S5=15,a1,a2,a4成等比
(1)求$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$
(2)求证:对任意正整数p,存在正整数n使得:$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$>p
(3)设bn2=an4,求证:对任意正整数q,存在正整数n使得:b1+b2+…+bn=q.

查看答案和解析>>

同步练习册答案