精英家教网 > 高中数学 > 题目详情
3.函数f(x)=2x2-mx+2,当x∈[2,+∞]时,f(x)单调递增函数,则m的取值范围是(  )
A.(-∞,+∞)B.[8,+∞)C.(-∞,-8]D.(-∞,8]

分析 首先确定二次函数的开口方向和对称轴的位置,然后结合单调性得到关于实数m的不等式,求解不等式即可求得最终结果.

解答 解:开口向上的二次函数满足题意时,对称轴应该不位于直线x=2的右侧,
据此可得:$-\frac{-m}{2×2}=\frac{m}{4}≤2$,
求解关于实数m的不等式可得:m≤8,
即实数m的取值范围是(-∞,8].
故选:D.

点评 本题考查二次函数的单调性,转化的思想等,重点考查学生对基础概念的理解和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设常数k>1,函数y=f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}-x,0≤x<1}\\{kf(x-1)-kx,x≥1}\end{array}\right.$,则f(x)在区间[0,2)上的取值范围为(-1,0]∪(-4k,-k].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ax+sinx的图象在某两点处的切线相互垂直,则a的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}中,a1=2,a n+1=3an+2n,求通项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.把“二进制”数1011001化为“十进制”数是87.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>b>0,则下列不等式一定不成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.log2a>log2bC.a2+b2≤2a+2b-2D.b<$\sqrt{ab}$<$\frac{a+b}{2}$<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式2x2-3x+1≥0的解集是$({-∞,\frac{1}{2}}]∪[{1,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=2sin(ωx+φ)(ω>0,且$|φ|<\frac{π}{2})$的部分图象如图所示,则f(0)的值为$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知两函数$f(x)=(x-a)(x-b)(x-c),g(x)=\sqrt{3}(x-b)(x-c)$,a<b<c,f′(a)=f′(c)
(1)求证:三数a、b、c成等差数列;
(2)$F(x)=\left\{{\begin{array}{l}{f(x),x≤b}\\{g(x),x>b}\end{array}}\right.$假设对一切实数x,F(x)≤f(x)恒成立,函数F(x)取极大值和极小值时对应点分别为M和N,
①求直线MN的斜率;
②记函数G(x)=f(x)-g(x),如果满足集合{y|y=G(x),b≤x≤c}={y|y=G(x),b≤x≤0}的最大实数b的值是B,求实数B.

查看答案和解析>>

同步练习册答案