分析 根据平面向量的数量积运算律可得H为△ABC的垂心,根据三角形相似列方程可得出△的三个内角,从而得出三个圆心角的大小,故可得出三个小三角形的面积比.
解答
解:由题知$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PC}•\overrightarrow{PH}=\overrightarrow{PB}•\overrightarrow{PC}+\overrightarrow{PA}•\overrightarrow{PH}$$⇒\overrightarrow{PB}•(\overrightarrow{PA}-\overrightarrow{PC})+\overrightarrow{PH}•(\overrightarrow{PC}-\overrightarrow{PA})=0⇒\overrightarrow{CA}•\overrightarrow{HB}=0$,
同理可得$\overrightarrow{CB}•\overrightarrow{HA}=0$,故H是△ABC的垂心,
设∠CAD=θ,则AE=cosθ,EH=sinθ,$BD=\sqrt{2}cosθ,DH=\sqrt{2}sinθ$,
由$\frac{CD}{HE}=\frac{AD}{AE}⇒CD=sinθ•\frac{{1+\sqrt{2}sinθ}}{cosθ}$,
∴BC=BD+CD=$\sqrt{2}cosθ+\frac{{sinθ+\sqrt{2}{{sin}^2}θ}}{cosθ}=\sqrt{3}$,
即$\sqrt{3}cosθ-sinθ=\sqrt{2}⇒cos(θ+\frac{π}{6})=\frac{{\sqrt{2}}}{2}$,∴$θ=\frac{π}{12}$,∴$C=\frac{5π}{12}$,
又$AD=1+\sqrt{2}sinθ$,$BD=\sqrt{2}cosθ$,则$AD-BD=1+2sin(θ-\frac{π}{4})=0$,∴$B=\frac{π}{4}$,
从而$A=\frac{π}{3}$,于是$∠AOB=2∠C=\frac{5π}{6},∠BOC=2∠A=\frac{2π}{3},∠AOC=2∠B=\frac{π}{2}$,
故${S_{△AOB}}:{S_{△BOC}}:{S_{△AOC}}=sin\frac{5π}{6}:sin\frac{2π}{3}:sin\frac{π}{2}=\frac{1}{2}:\frac{{\sqrt{3}}}{2}:1=1:\sqrt{3}:2$,
故答案为:1:$\sqrt{3}$:2.
点评 本题考查了平面向量的再几何中的应用,三角形的几何计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=ex-e-x | B. | f(x)=-xcosx | C. | f(x)=x2+xsinx | D. | f(x)=(2x+sinx)cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com