精英家教网 > 高中数学 > 题目详情
2.已知α为第三象限角,$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$.
(1)化简f(α);
(2)若$f(α)=\frac{4}{5}$,求tanα

分析 (1)根据诱导公式化简可得f(α);
(2)利用同角三角函数关系式即可得解.

解答 解:(1)由$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$=$\frac{-cosαsinα•(-tanα)}{-tanα•sinα}$=-cosα.
(2)∵$f(α)=\frac{4}{5}$,即cosα=$-\frac{4}{5}$,
α为第三象限角,
那么:sin$α=-\sqrt{1-co{s}^{2}α}$=$-\frac{3}{5}$
可得$tanα=\frac{sinα}{cosα}=\frac{3}{4}$.

点评 本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B
(1)求a的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=x+$\frac{a}{x}$具有如下性质:当a>0时,该函数在(0,$\sqrt{a}$]上是减函数,在[$\sqrt{a}$,+∞)上是增函数.
(1)如果函数y=x+$\frac{{2}^{b}}{x}$(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+$\frac{c}{{x}^{2}}$(常数 c>0)奇偶性和定义域内的单调性;
(3)对函数y=x+$\frac{a}{x}$和y=x2+$\frac{a}{{x}^{2}}$(常数 a>0)作出推广,使的它们都是你所推广的函数的特例,研究其单调性(只需写出结论,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90°,记Ti(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是(  )
A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数
C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图,它的侧视图与正视图相同,则它的体积为(  )
A.$2+\frac{{4\sqrt{2}π}}{3}$B.$4+\frac{{8\sqrt{2}π}}{3}$C.$2+\frac{{8\sqrt{2}π}}{3}$D.$4+\frac{{4\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知m,n∈N*,f(x)=(1+x)m+(1+x)n展开式中x的系数为19,则当x2的系数最小时展开式中x7的系数为156.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以下命题中正确的是(  )
A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥
B.以直角梯形的一腰为轴旋转所得的旋转体是圆台
C.有一个面是多边形,其余各面都是三角形的几何体叫做棱锥
D.圆锥的侧面展开图为扇形,这个扇形的半径为圆锥底面圆的半径

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于x的方程${π^x}=\frac{a+1}{2-a}$只有正实数解,则a的取值范围是($\frac{1}{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.i是虚数单位,复数$\frac{1-3i}{1-i}$的共轭复数是2+i.

查看答案和解析>>

同步练习册答案