精英家教网 > 高中数学 > 题目详情
4.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B
(1)求a的值;
(2)求△ABC的面积.

分析 (1)由已知,利用二倍角的正弦函数公式,正弦定理可得a=2b•cosB,进而利用余弦定理即可解得a的值.
(2)由(1)可求cosB,利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式即可计算得解.

解答 解:(1)∵A=2B,
∴sinA=sin2B,
∴sinA=2sinB•cosB,
∴a=2b•cosB,
∴$cosB=\frac{a}{2b}=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$,
∵b=3,c=1,解得a=$2\sqrt{3}$.
(2)∵$a=2\sqrt{3}$,由(1)得:cosB=$\frac{a}{6}$=$\frac{{\sqrt{3}}}{3}$,
∴$sinB=\frac{{\sqrt{6}}}{3}$,
∴${S_△}=\frac{1}{2}ac•sinB=\frac{1}{2}×2\sqrt{3}×1×\frac{{\sqrt{6}}}{3}=\sqrt{2}$.

点评 本题主要考查了二倍角的正弦函数公式,正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知圆C1的参数方程为$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=2+sinϕ}\end{array}}\right.$(ϕ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}中,首项a1<0,公差d>0,Sn为其前n项和,则点(n,Sn)可能在下列哪条曲线上(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:x2-8x-20≤0,命题q:(x-1-m)(x-1+m)≤0(m>0);若q是p的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)($\frac{\sqrt{3}}{2}$i-$\frac{1}{2}$)+$\frac{\sqrt{3}}{2}$i=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{1}{2}{x^2}-ax+({a-1})lnx$.讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过原点作曲线y=ex的切线,则切点的坐标为(1,e),切线的斜率为e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点是A(0,1),B,C,是椭圆上两点,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0.
(1)若椭圆的另一个顶点是抛物线y2=8x的焦点,求椭圆的离心率;
(2)若△ABC面积的最大值为$\frac{27}{8}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α为第三象限角,$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$.
(1)化简f(α);
(2)若$f(α)=\frac{4}{5}$,求tanα

查看答案和解析>>

同步练习册答案