精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)同时满足f(-x)=f(x),f(x)=f(4-x),且当2≤x≤6时,f(x)=(
1
2
|x-m|+n.
(Ⅰ)若f(4)=31,求m,n的值;
(Ⅱ)在(Ⅰ)的条件下,比较f(log3m)与f(log3n)的大小.
考点:抽象函数及其应用,函数的周期性,对数的运算性质
专题:函数的性质及应用
分析:(Ⅰ)利用函数的奇偶性和周期性进行求值即可.
(Ⅱ)表示出f(log3m),f(log3n)再利用函数的单调性比较.
解答: 解(Ⅰ)∵f(-x)=f(x),f(x)=f(4-x),
∴f(x)=f(4-x)=f(x-4),
即f(4+x)=f(x),
即4是函数f(x)的一个周期;
∴f(2)=f(6),
即(
1
2
|2-m|+n=(
1
2
|6-m|+n.
∴|2-m|=|6-m|,解得m=4,
又f(4)=31,
∴f(4)=(
1
2
|4-4|+n=1+n=31,
解得n=30.
(Ⅱ)由(Ⅰ)可知,f(x)=(
1
2
|x-4|+30.x∈[2,6].
因为1<log34<2,所以5<log34+4<6.
f(log3m)=f(log34)=f(log34+4)=(
1
2
|log34|+30.
又因为3<log330<4,
f(log3n)=f(log330)=)=(
1
2
|log330-4|+30=(
1
2
log3
81
30
+30,
log3
81
30
<log34,
由函数y=(
1
2
)x
为减函数,
∴f(log3m)<f(log3n).
点评:本题主要考查函数的周期性,单调性以及用方程思想参数的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=tan(-x+
π
4
)的单调递减区间是(  )
A、(kπ-
π
4
,kπ+
4
)(k∈Z)
B、(kπ-
4
,kπ+
π
4
)(k∈Z)
C、(2kπ-
π
4
,2kπ+
4
)(k∈Z)
D、(2kπ-
4
,2kπ+
π
4
)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为π.
(1)求函数y=f(x)的解析式;
(2)已知△ABC中角 A、B、C所对的边分别是a、b、c,且f(A+
π
6
)=
6
5
,c=2a,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(1-2log2x)n的展开式的所有奇数项的二项式系数之和为64.
(1)求n的值;
(2)求展开式的所有项的系数之和;
(3)求展开式的所有偶数项的系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,a,b,c分别为角A、B、C所对的边,且
a
sinA
=
2c
3

(Ⅰ)求角C;
(Ⅱ)若c=
7
,且△ABC的面积为
3
3
2
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是关于x的一次函数,且f(2),f(4),f(8)成等比数列,f(15)=15,已知Sn=f(1)+f(2)+…+f(n),n为正整数,求g(n)=
n
(n-32)Sn+166n
(其中n为正整数)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2+3
x-a
(a≠0).
(Ⅰ)解不等式f(x)<x;
(Ⅱ)当x>a时,最小值是6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:形如8n+7的数不可能是三个整数的平方和.

查看答案和解析>>

科目:高中数学 来源: 题型:

襄荆高速公路起自襄阳市贾家洲,止于荆州市龙会桥,全长约188公里.该高速公路连接湖北省中部的襄阳、荆门、荆州三市,是湖北省大三角经济主骨架中的干线公路之一.假设某汽车从贾家洲进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶到龙会桥,已知该汽车每小时的运输成本由固定部分和可变部分组成,固定部分为200元,可变部分与速度v(千米/时)的平方成正比(比例系数记为k).当汽车以最快速度行驶时,每小时的运输成本为488元.
(1)试求出k的值并把全程运输成本f(v)(元)表示为速度v(千米/时)的函数;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?

查看答案和解析>>

同步练习册答案