精英家教网 > 高中数学 > 题目详情
集合A={0,1,2,3,4},B={x|x2-x>0},则A∩B=(  )
A、{2,3,4}
B、{1}
C、{x|2<x≤4}
D、{x|x<0或x>2}
考点:交集及其运算
专题:集合
分析:求出B中不等式的解集,确定出B,求出A与B的交集即可.
解答: 解:由B中的不等式变形得:x(x-1)>0,
解得:x<0或x>1,即B=(-∞,0)∪(1,+∞),
∵A={0,1,2,3,4},
∴A∩B={2,3,4}.
故选:A.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
(3a-4)x+4a,x<1
-ax2+2x+3,x≥1
是定义域R上的减函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若角α的终边与240°角的终边相同,则
α
2
的终边在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且x>0时,f(x)=x2-2x-3,若方程f(x)=a有两个根,则实数a的取值范围是(  )
A、[-4,4]
B、[-3,0)∪(0,3]∪{-4,4}
C、[-3,3]∪{-4,4}
D、(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1的斜率为-
2
3
,直线l2经过点M(1,1),N(0,-
1
2
)
,则两条直线的位置关系为(  )
A、平行B、相交但不垂直
C、相交且垂直D、以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,角A、B、C所对边分别为a、b、c,若cos2C=1-
c2
b2
,则角B的大小为(  )
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中数学 来源: 题型:

若全集U={1,2,3,4}且∁UA={2},则集合A的子集共有(  )
A、3个B、5个C、7个D、8个

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义两点P(x1,y1)与Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.给出下列命题:
(1)若P(1,2),Q(sinα,2cosα)(α∈R),则d(P,Q)的最大值为3+
5

(2)若P,Q是圆x2+y2=1上的任意两点,则d(P,Q)的最大值为2
2

(3)若P(1,3),点Q为直线y=2x上的动点,则d(P,Q)的最小值为
1
2

其中为真命题的是(  )
A、(1)(2)(3)
B、(1)(2)
C、(1)(3)
D、(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

某市共有100万居民的月收入是通过“工资薪金所得”得到的,如图是抽样调查后得到的工资薪金所得X的频率分布直方图.工资薪金个人所得税税率表如表所示.表中“全月应纳税所得额”是指“工资薪金所得”减去3500元所超出的部分(3500元为个税起征点,不到3500元不缴税).工资个税的计算公式为:“应纳税额”=“全月应纳税所得额”乘以“适用税率”减去“速算扣除数”.


全月应纳税所得额 适用税率(%) 速算扣除数
不超过1500元 3 0
超过1500元至4500元 10 105
超过4500元至9000元 20 555
例如:某人某月“工资薪金所得”为5500元,则“全月应纳税所得额”为5500-3500=2000元,应纳税额为2000×10%-105=95(元)
在直方图的工资薪金所得分组中,以各组的区间中点值代表该组的各个值,工资薪金所得落入该区间的频率作为x取该区间中点值的概率.
(Ⅰ)试估计该市居民每月在工资薪金个人所得税上缴纳的总税款;
(Ⅱ)设该市居民每月从工资薪金所得交完税后,剩余的为其月可支配额y(元),试求该市居民月可支配额y的数学期望.

查看答案和解析>>

同步练习册答案