精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(3,-4),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为(  )
A.-2B.-1C.0D.2

分析 根据平面向量的数量积运算与向量投影的定义,写出对应的运算即可.

解答 解:向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(3,-4),
∴$\overrightarrow{a}$•$\overrightarrow{b}$=1×3+2×(-4)=-5,
|$\overrightarrow{b}$|=$\sqrt{{3}^{2}{+(-4)}^{2}}$=5;
∴向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为:
|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{-5}{5}$=-1.
故选:B.

点评 本题考查了平面向量的数量积运算与向量投影的定义与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|(x-1)=0},那么(  )
A.0∈MB.1∉MC.-1∈MD.0∉M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且椭圆上的点到一个焦点的最短距离为$\frac{\sqrt{3}}{3}$b.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若点M($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有(  )
A.0条B.1条C.2条D.1条或2条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ln(x+m)-mx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设m>1,x1,x2为函数f(x)的两个零点,求证:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设P为双曲线$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{25}$=1右支上的任意一点,O为坐标原点,过点P作双曲线两渐近线的平行线,分别与两渐近线交于A,B两点,则平行四边形PAOB的面积为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ex(ax2+x+1).
(1)若a>0,求f(x)的单调区间;
(2)若函数f(x)在x=1处有极值,请证明:对任意$θ∈[{0,\frac{π}{2}}]$时,都有|f(cosθ)-f(sinθ)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x≥1}\\{-lgx,0<x<1}\end{array}\right.$,若f(a)=f(b)(0<a<b),则$\frac{1}{a}+\frac{4}{b}$当取得最小值时,f(a+b)=1-2lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-ax+21n x.
(1)若函数y=f(x)在定义域上单调递增,求实数a的取值范围;
(2)设f(x)有两个极值点x1,x2,若x1∈(0,$\frac{1}{e}$],且f(x1)≥t+f(x2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案