精英家教网 > 高中数学 > 题目详情
17.下列说法正确的是(  )
A.“x<0”是“ln(x+1)<0”的充要条件
B.“?x≥2,x2-3x+2≥0”的否定是“?x<2,x2-3x+2<0”
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60
D.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为0.8

分析 A.由ln(x+1)<0解得0<x+1<1,解得-1<x<0,即可判断出正误;
B.利用命题的否定定义即可判断出正误;
C.采用系统抽样法可知:该班学生人数可能为55;
D.由正态分布的对称性可得:X在(0,2)内取值的概率为0.8.

解答 解:A.由ln(x+1)<0解得0<x+1<1,解得-1<x<0,∴“x<0”是“ln(x+1)<0”的必要不充分条件,是假命题;
B.“?x≥2,x2-3x+2≥0”的否定是“?x≥2,x2-3x+2<0”,因此不正确;
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为55,因此不正确;
D.某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.4,由正态分布的对称性可得:X在(0,2)内取值的概率为0.8,正确.
故选:D.

点评 本题考查了简易逻辑的判定、正态分布的对称性、系统抽样法的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.函数y=x2一点P(非原点),在P处引切线交x轴,y轴于Q,R,求$\frac{|PQ|}{|PR|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求定积分:${∫}_{-4}^{3}$|x+a|dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察下列各式:$\root{3}{2+\frac{2}{7}}$=2•$\root{3}{\frac{2}{7}}$,$\root{3}{3+\frac{3}{26}}$=3$•\root{3}{\frac{3}{26}}$,$\root{3}{4+\frac{4}{63}}$=4•$\root{3}{\frac{4}{63}}$,…,若$\root{3}{9+\frac{9}{m}}$=9•$\root{3}{\frac{9}{m}}$,则m=(  )
A.80B.81C.728D.729

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.小李同学今年寒假共抢得了九个红包,其中每个红包里有且仅有一个数字(单位为元),他将这九个数字组成如图$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$所示的数阵,发现每行的三个数依次成等差数列,每列的三个数也依次成等差数列.若a22=26,则小李同学一共抢了234元的红包.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若圆柱的侧面积和体积的值都是12π,则该圆柱的高为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(x6$+\frac{1}{x\sqrt{x}}$)n的展开式中含有常数项,则n的最小值等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设{an}是公差不为零的等差数列,Sn为其前n项和,a22+a23=a28+a23,S7=7
(Ⅰ)求{an}的通项公式
(Ⅱ)若1+2log2bn=an+3(n∈N*),求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=(  )
A.-1B.0C.2D.4

查看答案和解析>>

同步练习册答案