精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象与x轴的相邻两个交点之间的距离为$\frac{π}{2}$,且图象上一个最高点为Q($\frac{π}{6}$,2)
(1)求f(x)的解析式;
(2)当x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的最小值及相应的x的值.

分析 (1)由函数f(x)图象的最高点坐标得出A的值,由x轴上相邻的两个交点之间的距离求出周期与ω的值,再把点的坐标代入求出φ的值即可;
(2)根据x的取值范围求出2x+$\frac{π}{6}$的取值范围,计算f(x)的最小值以及对应的x值.

解答 解:(1)由函数f(x)=Asin(ωx+φ)图象的最高点为Q($\frac{π}{6}$,2)得A=2;
由x轴上相邻的两个交点之间的距离为$\frac{π}{2}$,
得$\frac{T}{2}$=$\frac{π}{2}$,即T=π,
ω=$\frac{2π}{T}$=$\frac{2π}{π}$=2;
由点Q($\frac{π}{6}$,2)在图象上得2sin(2×$\frac{π}{6}$+φ)=2,
sin($\frac{π}{3}$+φ)=1,
故$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
φ=2kπ+$\frac{π}{6}$,k∈Z,
又φ∈(0,$\frac{π}{2}$),∴φ=$\frac{π}{6}$,
f(x)=2sin(2x+$\frac{π}{6}$);
(2)∵x∈[$\frac{π}{12}$,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],
当2x+$\frac{π}{6}$=$\frac{7π}{6}$即x=$\frac{π}{2}$时,f(x)取得最小值-1.
故f(x)的最小值-1,此时x=$\frac{π}{2}$.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了求三角函数解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,且向量$k\overrightarrow a-\overrightarrow b$与$\overrightarrow a+3\overrightarrow b$平行,则k=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{13}{3}$D.$\frac{17}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{x},x∈[-1,-\frac{1}{2})\\-\frac{5}{2},x∈[-\frac{1}{2},\frac{1}{2})\\ x-\frac{1}{x},x∈[\frac{1}{2},1)\end{array}$.
(1)求f(x)的值域;
(2)设函数g(x)=ax-3,x∈[-1,1],若对于任意x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=cos2(x-φ)-sin2(x-φ),其中φ∈(0,$\frac{π}{2}}$),已知f(x)图象的一个对称中心为点($\frac{π}{3}$,0).
(Ⅰ)求φ的值;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且f($\frac{A}{2}$+$\frac{π}{12}$)=$\frac{\sqrt{2}}{2}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=x3+x-4,则函数f(x)的零点位于区间(  )内.
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集U=R,M={x|-3<x<2},N={x|x<-4或x>1},则(∁UM)∩N等于(  )
A.M∪NB.U(M∪N)C.{x|x<-4或x≥2}D.{x|x<-3或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,函数y=f[f(x)]-$\frac{1}{2}$的零点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,则f(a)等于(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|y=$\sqrt{{2}^{x}-1}$),B={x|x2-1>0},则A∩B=(  )
A.(-∞,-1)B.[0,1)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

同步练习册答案