精英家教网 > 高中数学 > 题目详情
命题“?x∈R,sinx>-1”的否定是(  )
A、?x∈R,sinx≤-1
B、?x0∈R,sinx0≤-1
C、?x0∈R,sinx0>-1
D、不存在x∈R,sinx>-1
考点:命题的否定
专题:简易逻辑
分析:直接利用全称命题的否定是特称命题写出结果即可.
解答: 解:全称命题的否定是特称命题,
所以命题“?x∈R,sinx>-1”的否定是:?x0∈R,sinx0≤-1.
故选:B.
点评:本题考查命题的否定,全称命题与特称命题的否定关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+3),g(x)=log2(3-x),
(1)求函数f(x)-g(x)的表达式及定义域;
(2)判断函数f(x)-g(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2-|x|
x-1
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C的对边分别为a、b、c,S是△ABC的面积,且4S=a2+b2-c2,则tan(π-C)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={-1,0,1,2},A={-1,2},B={0,2},则∁U(A∩B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=(x2+2x-3)+(x+3)i为纯虚数,则实数x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=|
OB
|=1,
OA
OB
的夹角为120°,
OC
OA
的夹角为30°,|
OC
|=5且
OC
=m
OA
+n
OB
,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:2x2+2y2-8x-8y-1=0和圆N:x2+y2+2x+2y-6=0,直线l:x+y-9=0.
(1)求过圆M,N的交点及原点O的圆的方程;
(2)过直线上一点作使∠BAC=45°,边AB过圆心M,且B,C在圆M上.
①当点A的横坐标为4时,求直线AC的方程;
②求点A的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费p(万元)与仓库到停车库的距离x(公里)成反比,而每月库存货物的运费k(万元)与仓库到停车库的距离x(公里)成正比.如果在距离停车库18公里处建仓库,这两项费用p和k分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x=
 
公里.

查看答案和解析>>

同步练习册答案