精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{(x-2)(x+a)}{x}$为奇函数,则a=2.

分析 先求出函数的定义域,利用f(-1)=-f(1),即可得出结论.

解答 解:显然定义域为(-∞,0)∪(0,+∞).
由f(-1)=$\frac{-3(-1+a)}{-1}$=-(1-2)(1+a),
所以a=2.
故答案为:2.

点评 本题考查了利用函数的奇偶性定义,考查赋值法的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知分段函数y=$\left\{\begin{array}{l}{3-x,x<-1}\\{{x}^{2},-1≤x≤1}\\{x+1,x>1}\end{array}\right.$,若执行如图所示的程序框图,则框图中的条件应该填写(  )
A.x≥1?B.x≥-1?C.-1≤x≤2?D.x≤1?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),A、C是椭圆短轴的两端点,过点E(3c,0)的直线AE与椭圆相交于另一点B,且F1A∥F2B
(I )求椭圆的离心率;
(II)设直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆C与圆C1:(x-2)2+y2=1外切.又与直线l:x=-1相切
(1)求动圆C的圆心的轨迹方程E;
(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交干A,B两点.求证:kMA+kMB=2kMP

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}的前n项和Sn=2n-1,则数列{an2}的前n项和Tn=(  )
A.(2n-1)2B.4n-1C.$\frac{{4}^{n}-1}{3}$D.$\frac{{4}^{n+1}-4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某人经营一个抽奖游戏,顾客花费4元钱可购买一次游戏机会,毎次游戏,顾客从标有1、2、3、4的4个红球和标有2、4的2个黑球共6个球中随机摸出2个球,并根据模出的球的情况进行兑奖,经营者将顾客模出的球的情况分成以下类别:
A.两球的顔色相同且号码相邻;
B.两球的颜色相同,但号码不相邻;
C.两球的顔色不同.但号码相邻;
D.两球的号码相同
E.其他情况
经营者打算将以上五种类别中最不容易发生的一种类別对应一等奖,最容易发生的一种类别对应二等奖.其它类别对应三等奖
(1)一、二等奖分别对应哪一种类别(用宇母表示即可)
(2)若中一、二、三等奖分别获得价值10元、4元、1元的奖品,某天所有顾客参加游戏的次数共计100次,试估计经营者这一天的盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设i为虚数单位,复数z满足z(2-i)=i3,则复数z的虚部为$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.摩拜单车和ofo小黄车等各种共享自行车已经遍布大街小巷,给我们的生活带来了便利.某自行车租车点的收费标准是:每车使用1小时之内是免费的,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为$\frac{1}{4}$,$\frac{1}{2}$;1小时以上且不超过2小时还车的概率分别为$\frac{1}{2}$,$\frac{1}{4}$;两人租车时间都不会超过3小时.
(Ⅰ)求甲乙两人所付的租车费用相同的概率;
(Ⅱ)设甲乙两人所付租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读下列程序框图,输出的结果s的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.0C.$-\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案