精英家教网 > 高中数学 > 题目详情
19.在极坐标系中,点A和点B的极坐标分别为(2,$\frac{π}{3}$),(3,0),O为极点,求:
(1)|AB|;
(2)求△AOB的面积.

分析 (1)利用余弦定理即可得出.
(2)利用三角形面积计算公式即可得出.

解答 解:(1)△AOB中,|OA|=2,|OB|=3,∠AOB=$\frac{π}{3}$由余弦定理得
|AB|=$\sqrt{{2}^{2}+{3}^{2}-2×2×3cos\frac{π}{3}}$=$\sqrt{7}$.
(2)S△AOB=$\frac{1}{2}$|OA|•|OB|•sin∠AOB=$\frac{1}{2}$×2×3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.

点评 本题考查了极坐标的应用、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设X~B(4,p),其中0<p<$\frac{1}{2}$,且P(X=2)=$\frac{8}{27}$,那么P(X=1)=(  )
A.$\frac{8}{81}$B.$\frac{16}{81}$C.$\frac{8}{27}$D.$\frac{32}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\left\{\begin{array}{l}(1-2a)x+5(x≤12)\\{a^{x-13}}(x>12)\end{array}\right.$,若数列{an}满足an=f(n),n∈N+,且对任意的两个正整数m,n(m≠n),都有(m-n)(am-an)<0,则实数a的取值范围是($\frac{1}{2}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合An={1,2,3,…,n}(n∈N*,n≥3),记An中的元素组成的非空子集为$A_i^'$(i∈N*,i=1,2,3,…,2n-1),对于?i∈{1,2,3,…,2n-1},$A_i^'$中的最小元素和为Sn,则S5=(  )
A.32B.57C.75D.480

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=2sin(πx+φ)+1(0<φ<π)是偶函数,则φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有6个零件,其中4个一等品,2个二等品,若从这6个零件中任意取2个,那么至少有1个一等品的概率是$\frac{14}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)的图象如图所示,则下列关系正确的是(  )
A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(2)<f(3)-f(2)<f'(3)C.0<f'(3)<f(3)-f(2)<f'(2)D.0<f(3)-f(2)<f'(2)-f'(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=sinxcosx-$\sqrt{3}$cos(x+π)cosx(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数y=f(x)的图象按$\overrightarrow{b}$=($\frac{π}{4}$,$\frac{\sqrt{3}}{2}$)平移后得到函数y=g(x)的图象,求y=g(x)在[0,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}中,a3=2,a6=1,若{ $\frac{1}{1+{a}_{n}}$ }是等差数列,则a11等于(  )
A.0B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案