精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)的定义域为R,当x>0时,f(x)=log2x,若g(x)=xf(x)为偶函数,则f(-$\frac{1}{2}$)=(  )
A.0B.-1C.$\frac{1}{2}$D.1

分析 根据函数奇偶性的性质进行判断求解即可.

解答 解:若g(x)=xf(x)为偶函数,
则函数f(x)为奇函数,
∵当x>0时,f(x)=log2x,
∴f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-log2$\frac{1}{2}$=-(-1)=1,
故选:D.

点评 本题主要考查函数值的计算,根据函数奇偶性的性质进行转化求解是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求下列函数的定义域
y=sin$\sqrt{{x}^{2}}$;y=$\frac{1}{1+2sinx}$;y=$\sqrt{\frac{1}{2}+sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B满足sin$\frac{3A}{2}$=sin$\frac{3B}{2}$,则三边a,b,c必满足(  )
A.a=bB.a=b=c
C.a+b=2cD.(a-b)(a2+b2-ab-c2)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中k为常数.
(1)若k=-1,函数f(x)是否具有周期性?若是,求出其周期;
(2)在(1)的条件下,又知f(x)为定义在R上的奇函数,且当0≤x≤1时,f(x)=$\frac{1}{2}$x,则方程f(x)=-$\frac{1}{2}$在区间[0,2016]上有多少个解?(写出结论,不需过程)
(3)若k为负常数,且当0≤x≤2时,f(x)=x(x-2),求f(x)在[-3,3]上的解析式,并求f(x)的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若α∈(π,2π),则$\sqrt{\frac{1+cosα}{2}}$化简的结果为(  )
A.sin$\frac{α}{2}$B.cos$\frac{α}{2}$C.-sin$\frac{α}{2}$D.-cos$\frac{α}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.利用定积分的几何意义,比较${∫}_{0}^{1}$exdx,${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:
(1)$\frac{1-2sin2xcos2x}{co{s}^{2}2x-si{n}^{2}2x}$=$\frac{1-tan2x}{1+tan2x}$;
(2)(2-cos2α)(2+tan2α)=(1+2tan2α)(2-sin2α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}:$\frac{1}{3}$,-$\frac{1}{2}$,$\frac{3}{5}$,-$\frac{2}{3}$,…
(1)写出数列的通项公式;
(2)计算a10,a15,a2n+1
(3)证明;数列{|an|}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若钝角三角形ABC的三个内角满足:∠A<∠B<∠C,2∠B=∠A+∠C,且最大边长与最小边长的比值为m,则m的取值范围是(2,+∞).

查看答案和解析>>

同步练习册答案