精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系中,“点M的坐标满足方程4$\sqrt{x}$+y=0”是“点M在曲线y2=16x上”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

分析 点M的坐标满足方程4$\sqrt{x}$+y=0可得:点M在曲线y2=16x上;反之不成立,例如取x=4,y=8.即可判断出结论.

解答 解:点M的坐标满足方程4$\sqrt{x}$+y=0,化为:y2=16x,(y≤0),
∴点M的坐标满足方程4$\sqrt{x}$+y=0”是“点M在曲线y2=16x上”的充分非必要条件.
故选:A.

点评 本题考查了圆锥曲线的方程、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=2|x+a|-|x+b|
(Ⅰ)当a=0,b=-$\frac{1}{2}$时,求使f(x)≥$\sqrt{2}$的x取值范围;
(Ⅱ)若f(x)≥$\frac{1}{16}$恒成立,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.${(x+\frac{1}{x}-2)^5}$展开式中常数项为(  )
A.160B.-160C.252D.-252

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中
①复数a+bi与c+di相等的充要条件是a=c且b=d
②任何复数都不能比较大小
③若$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$,则|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|
④若|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|,则$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$或$\overrightarrow{{z}_{1}}$=-$\overrightarrow{{z}_{2}}$.
正确的选项是(  )
A.①③B.①②C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2+i}{i}$的虚部是(  )
A.2B.2iC.-2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的前n项为Sn,且满足关系式lg(Sn-1)=n (n∈N*),则数列{an}的通项公式an=(  )
A.9•10n-1B.$\left\{{\begin{array}{l}{11}\\{9•{{10}^{n-1}}}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$
C.10n+1D.$\left\{{\begin{array}{l}9\\{{{10}^n}+1}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一扇形的周长等于4cm,面积等于1cm2,则该扇形的半径为1,圆心角为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=alnx-$\frac{1}{2}$x2,h(x)=$\frac{1}{2}$x2
(1)求函数g(x)的单调区间;
(2)对于函数f(x)与h(x)定义域内的任意实数x,若存在直线y=kx+b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线,求证:直线y=x-$\frac{1}{2}$为函数f(x)与h(x)的分界线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b),(a>0,b>0)已知投资额为零时,收益为零.
(1)求a、b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

查看答案和解析>>

同步练习册答案