精英家教网 > 高中数学 > 题目详情
10.某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b),(a>0,b>0)已知投资额为零时,收益为零.
(1)求a、b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

分析 (1)利用已知条件真假通过f(0)=0,g(0)=01就a,b即可.
(2)设投入经销B商品的资金为x万元(0<x≤5),则投入经销A商品的资金为(5-x)万元,设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).通过函数的导数,求解函数的最值即可.

解答 解:(1)由投资额为零时收益为零,可知f(0)=-a+2=0,g(0)=6lnb=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
设投入经销B商品的资金为x万元(0<x≤5),则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).
S′(x)=,-2,令S′(x)=0,得x=2.
当0<x<2时,S′(x)>0,函数S(x)单调递增;
当2<x≤5时,S′(x)<0,函数S(x)单调递减.
∴当x=2时,函数S(x)取得最大值,S(x)max=S(2)=6ln3+6≈12.6万元.
∴当投入经销A商品3万元,B商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.

点评 本题考查函数的解析式以及函数的导数的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,“点M的坐标满足方程4$\sqrt{x}$+y=0”是“点M在曲线y2=16x上”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),且$\overrightarrow{a}$,$\overrightarrow{b}$满足关系|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k为正数).
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的数量积用k表示的解析式f(k).
(2)$\overrightarrow{a}$能否与$\overrightarrow{b}$垂直?$\overrightarrow{a}$能否与$\overrightarrow{b}$平行?若不能,说明理由;若能,求出相应的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(x)是定义在(-1,1)上的减函数,则下列不等式正确的是(  )
A.f(sinx)>f(cosx)B.f($\frac{{x}^{2}+1}{2}$)>f(x)
C.f($\frac{1}{{3}^{x}+1}$)≥f($\frac{1}{{2}^{x}+1}$)D.f($\frac{1}{{3}^{x}+{3}^{-x}}$)≥f($\frac{1}{{2}^{x}+{2}^{-x}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=x+asinx.
(1)若a=1.求f(x)在区间[0,1]上的最大值;
(2)若f(x)在(-∞,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD.
(1)证明:EF∥面BCD;
(2)证明:面ACD⊥面CEF;
(3)求三棱锥O1-OBF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}为等差数列,a4=9,d=-2,则S4=48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列的前n项和也构成一个等差数列,即Sn,S2n-Sn,S3n-S2n,…为等差数列,公差为n2d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若复数(2+bi)(1+i)是纯虚数,则实数b的值为2.

查看答案和解析>>

同步练习册答案