精英家教网 > 高中数学 > 题目详情
19.等差数列的前n项和也构成一个等差数列,即Sn,S2n-Sn,S3n-S2n,…为等差数列,公差为n2d.

分析 根据等差数列的性质,推出(S2n-Sn)-Sn)=n2d,(S3n-S2n)-(S2n-Sn)=n2d,故可求得公差.

解答 解:设等差数列an的首项为a1,公差为d,
则Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,
∴(S2n-Sn)-Sn)=n2d,
同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,
∴(S3n-S2n)-(S2n-Sn)=n2d,
故答案为:n2d.

点评 本题考查等差前n项和公式的推理,计算过程简单,属于掌握知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=alnx-$\frac{1}{2}$x2,h(x)=$\frac{1}{2}$x2
(1)求函数g(x)的单调区间;
(2)对于函数f(x)与h(x)定义域内的任意实数x,若存在直线y=kx+b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线,求证:直线y=x-$\frac{1}{2}$为函数f(x)与h(x)的分界线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b),(a>0,b>0)已知投资额为零时,收益为零.
(1)求a、b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+2}$+1(n∈N*),则使不等式a2016>2016成立的所有正整数a1的集合为(  )
A.{a1|a1≥2016,a1∈N*}B.{a1|a1≥2015,a1∈N*}C.{a1|a1≥2014,a1∈N*}D.{a1|a1≥2013,a1∈N*}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+x•|x-a|,x∈[1,5]
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)当a≥3时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当x∈[0,2]时,函数f(x)=ax2+4(a-1)x-3在x=2时取得最大值,则实数a的取值范围是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(2>b>0)的上,下顶点分别为A,B,过点B的直线与椭圆交于另一点D,与直线y=-2交于点M.
(Ⅰ)当b=1且点D为椭圆的右顶点时,求三角形AMD的面积S的值;
(Ⅱ)若直线AM,AD的斜率之积为-$\frac{3}{4}$,求椭圆C的方程及$\overrightarrow{MA}$$•\overrightarrow{MD}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,“$\overrightarrow{a}$∥$\overrightarrow{b}$”是“$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow{b}$)”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(2,-4),B(4,6),求线段AB中点的坐标.

查看答案和解析>>

同步练习册答案