【题目】已知函数f(x)=mx2-mx-1.
(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;
(2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.
【答案】(1)(-4,0].(2)
【解析】试题分析:(1)先根据二次项系数是否为零分类讨论,再结合二次函数图像确定不等式恒成立的条件,最后求解实数m的取值范围;(2)分类变量将不等式转化为对应函数最值问题:
的最小值,再根据二次函数求最值,即得实数m的取值范围.
试题解析:解:(1)由题意可得m=0或
m=0或-4<m<0-4<m≤0.
故m的取值范围是(-4,0].
(2)要使f(x)<-m+5在[1,3]上恒成立,即m
2+
m-6<0在x∈[1,3]上恒成立.
令g(x)=m
2+
m-6,x∈[1,3].
当m>0时,g(x)在[1,3]上是增函数,
所以g(x)max=g(3)7m-6<0,
所以m<
,则0<m<
;
当m=0时,-6<0恒成立;
当m<0时,g(x)在[1,3]上是减函数,
所以g(x)max=g(1)m-6<0,
所以m<6,所以m<0.
综上所述:m的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(Ⅰ)完成下面的
列联表;
不喜欢运动 | 喜欢运动 | 合计 | |
女生 | 50 | ||
男生 | |||
合计 | 100 | 200 |
![]()
(Ⅱ)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段
和
的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为抛物线
的焦点,点
为点
关于原点的对称点,点
在抛物线
上,则下列说法错误的是( )
A. 使得
为等腰三角形的点
有且仅有4个
B. 使得
为直角三角形的点
有且仅有4个
C. 使得
的点
有且仅有4个
D. 使得
的点
有且仅有4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某购物网站对在7座城市的线下体验店的广告费指出
(万元)和销售额
(万元)的数据统计如下表:
城市 |
|
|
|
|
|
|
|
广告费支出 |
|
|
|
|
|
|
|
销售额 |
|
|
|
|
|
|
|
(Ⅰ)若用线性回归模型拟合
与
关系,求
关于
的线性回归方程;
(Ⅱ)若用对数函数回归模型拟合
与
的关系,可得回归方程
,经计算对数函数回归模型的相关系数约为
,请说明选择哪个回归模型更合适,并用此模型预测
城市的广告费用支出
万元时的销售额.
参考数据:
,
,
,
,
,
.
参考公式:
,
.
相关系数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018届高三·湖南十校联考)已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时,
的取值范围是( )
A.
B. ![]()
C. [1,3
-3] D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河南安阳市高三一模】如下图,在平面直角坐标系
中,直线
与直线
之间的阴影部分即为
,区域
中动点
到
的距离之积为1.
![]()
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)动直线
穿过区域
,分别交直线
于
两点,若直线
与轨迹
有且只有一个公共点,求证:
的面积恒为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com