| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{2}}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{{5\sqrt{2}}}{4}$ |
分析 由题意结合正弦函数、余弦函数的图象,求得A、B、C三点的坐标,即可求得△ABC的面积.
解答 解:∵函数f(x)=sinπx和函数g(x)=cosπx在区间[-1,2]上的图象交于 A、B、C三点,
由sinπx=cosπx,x∈[-1,2],求得x=-$\frac{1}{4}$,$\frac{1}{4}$,$\frac{5}{4}$,
可得A(-$\frac{3}{4}$,-$\frac{\sqrt{2}}{2}$)、B($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$)、C($\frac{5}{4}$,-$\frac{\sqrt{2}}{2}$),
则△ABC的面积为$\frac{1}{2}$•AC•$\sqrt{2}$=$\sqrt{2}$,
故选:C.
点评 本题主要考查正弦函数、余弦函数的图象,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+2+3+…+2k+2(k+1)=2k2+k+2(k+1)2+(k+1) | |
| B. | 1+2+3+…+2k+2(k+1)=2(k+1)2+(k+1) | |
| C. | 1+2+3+…+2k+2k+1+2(k+1)=2k2+k+2(k+1)2+(k+1) | |
| D. | 1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1+i | B. | -1-i | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{20}{3}$ | C. | $\frac{4}{3}$(3+$\sqrt{2}$) | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,x2+5x>4 | B. | “?x∈R,x2+5x≤4 | C. | ?x0∈R,x2+5x≤4 | D. | 以上都不正确 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com