精英家教网 > 高中数学 > 题目详情
4.已知f(x)是偶函数,且在[0,1]上是增函数,则f(0.5)、f(-1)、f(0)的大小关系是(  )
A.f(0.5)<f(0)<f(-1)B.f(-1)<f(0.5)<f(0)C.f(0)<f(0.5)<f(-1)D.f(-1)<f(0)<f(0.5)

分析 根据f(x)在[0,1]上为增函数,从而可以得到f(0)<f(0.5)<f(1),而根据f(x)为偶函数便可得到f(-1)=f(1),这样便可找出正确选项.

解答 解:f(x)在[0,1]上为增函数,0<0.5<1;
∴f(0)<f(0.5)<f(1);
又f(-1)=f(1);
∴f(0)<f(0.5)<f(-1).
故选:C.

点评 考查偶函数的定义,增函数的定义,根据增函数的定义比较函数值的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.对于一组向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{{a}_{P}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{P}}$|,那么称$\overrightarrow{a_p}$是该向量组的“h向量”;
(1)设$\overrightarrow{{a}_{n}}$=(n,n+x)(n∈N*),若$\overrightarrow{a_3}$是向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,求x的范围;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*)是否存在“h向量”?
给出你的结论并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在下列命题中,真命题的个数是(  )
①若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
②由样本数据得到的回归直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$必过样本点的中心($\overline{x}$,$\overline{y}$);
③残差平方和越小的模型,拟合的效果越好;
④若复数z=m2-1+(m+1)i为纯虚数,则实数m=±1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lg(x+1)
(1)当x∈[1,9]时,求函数f(x)的反函数;
(2)若0<f(1-2x)-f(x)<1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x≥\frac{3}{2}}\\{lg(3-x),x<\frac{3}{2}}\end{array}\right.$,若方程f(x)=k有实数解,则实数k的取值范围是[lg$\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x∈[1,4]}\\{(x-5)^{2}+1,x∈(4,7]}\end{array}\right.$.
(1)在给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间(不需要证明);
(3)写出当x取何值时f(x)取最值,并求出最值(不需要证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
①$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{(π+e)^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$
②$2lg5+lg4+ln\sqrt{e}+{log_{25}}5$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个命题中的真命题为(  )
A.?x0∈z,1<4x0<3B.?x0∈z,4x0+1=0C.?x∈R,x2-1=0D.?x∈R,x2-2x+2≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆锥的底面圆的半径为1,侧面展开图中扇形的圆角为120°,则该圆锥的体积为$\frac{2\sqrt{2}}{3}π$.

查看答案和解析>>

同步练习册答案