精英家教网 > 高中数学 > 题目详情
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是
2
3
,且每题正确完成与否互不影响.
(Ⅰ)分别写出甲、乙两考生正确完成题数的数学期望;
(Ⅱ)试从两位考生正确完成题数的数学期望及甲,乙能通过提交的概率,分析比较两位考生的实验操作能力.
考点:离散型随机变量的期望与方差,极差、方差与标准差
专题:概率与统计
分析:(Ⅰ)设考生甲、乙正确完成实验操作的题数分别为ξ,η,则ξ的取值分别为1、2、3,η的取值分别,0、1、2、3,分别求出相应的概率,由此能求出甲、乙两考生正确完成题数的数学期望.
(Ⅱ)因为P(ξ≥2)>P(η≥2),从做对题的数学期望考察,两人水平相当;从至少正确完成2题的概率考察,甲通过的可能性大,因此可以判断甲的实验操作能力较强.
解答: 解:(Ⅰ)设考生甲、乙正确完成实验操作的题数分别为ξ,η,
则ξ的取值分别为1、2、3,η的取值分别,0、1、2、3,
P(ξ=1)=
C
1
4
C
2
2
C
3
6
=
1
5

P(ξ=2)=
C
2
4
C
1
2
C
3
6
=
3
5

P(ξ=3)=
C
3
4
C
0
2
C
3
6
=
1
5

所以考生甲正确完成实验操作的题数的概率分布列为:
ξ 1 2 3
P
1
5
3
5
1
5
∴E(ξ)=
1
5
+3×
3
5
+3×
1
5
=2.
因为η~B(3,
2
3
),所以考生乙正确完成实验操作的题数的期望E(η)=3×
2
3
=2.
(Ⅱ)因为P(ξ≥2)=
3
5
+
1
5
=
4
5

P(η≥2)=
12
27
+
8
27
=
20
27
,所以P(ξ≥2)>P(η≥2),
从做对题的数学期望考察,两人水平相当;
从至少正确完成2题的概率考察,甲通过的可能性大,
因此可以判断甲的实验操作能力较强.
点评:本题考查离散型随机变量的数学期望的求法,考查两人实验操作能力的判断,是中档题,解题时要注意二项分布的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=
m(x+1)-2
3mx2+4mx+3
的定义域为R,则实数m的取值范围是(  )
A、(0,
3
4
]
B、(0,
3
4
C、[0,
3
4
]
D、[0,
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图AD,BC,AE分别是⊙O的三条切线,切点分别是D,E,F,AG是⊙O的一条割线,交⊙O于F,G两点,△ABC的周长2
3
,⊙O的半径为1.
(1)求证:AF•AG=3;
(2)求AF2+FG2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥A-BCDE,平面ABC⊥平面BCDE,△ABC边长为2的等边三角形,底面BCDE是矩形,且CD=
2

(Ⅰ)若点G是AE的中点,求证:AC∥平面BDG;
(Ⅱ)试问点F在线段AB上什么位置时,二面角B-CE-F的大小为
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.直线l的极坐标方程是p(cosθ+
3
sinθ)=2,曲线C的参数方程是
x=3cosα
y=3sinα
(θ为参数),求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|x-2y|=5,求证:x2+y2≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式m2-m<f(x),?x∈R都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知阶矩阵A=
12
21
,向量β=
2
2

(1)求阶矩阵A的特征值和特征向量;
(2)计算A2β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,且nSn+1-(n+1)Sn=
n2+n
2
(n∈N+).
(1)求数列{an}的通项公式;
(2)记bn=
an+3
2an+1an3
,证明:当n≥2时,b1+b2+b3+…+bn
9
8

查看答案和解析>>

同步练习册答案