精英家教网 > 高中数学 > 题目详情
设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.
(1)-y2=1
(2)(,-)
(1)依题意得两圆的圆心分别为F1(-,0),F2(,0),从而可得|CF1|+2=|CF2|-2或|CF2|+2=|CF1|-2,
所以||CF2|-|CF1||=4=2a<|F1F2|=2=2c,
所以圆心C的轨迹是以原点为中心,焦点在x轴上,且实轴长为4,焦距为2的双曲线,
因此a=2,c=,b2=c2-a2=1,
故C的圆心轨迹L的方程为-y2=1.
(2)过点M,F的直线l的方程为y=-2(x-),将其代入-y2=1中,解得x1,x2,故直线l与L的交点为T1(,-),T2(),
因为T1在线段MF外,T2在线段MF上,
所以||MT1|-|FT1||=|MF|=2,||MT2|-|FT2||<|MF|=2.
若点P不在MF上,则||MP|-|FP||<|MF|=2.
综上所述,||MP|-|FP||只在点T1处取得最大值,
即||MP|-|FP||的最大值为2,
此时点P的坐标为(,-).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,设有双曲线,F1,F2是其两个焦点,点M在双曲线上.
(1)若∠F1MF2=90°,求△F1MF2的面积;
(2)若∠F1MF2=60°,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?
(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
a2
+
y2
5
=1(a
为定值,且a>
5
)
的左焦点为F,直线x=m与椭圆相交于点A、B,△FAB的周长的最大值是12,则该椭圆的离心率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线,点为其两个焦点,点P为双曲线上一点,若,则的值为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P为双曲线x2=1右支上的一点,F1、F2是该双曲线的左、右焦点,若|PF1|∶|PF2|=3∶2,则∠F1PF2的大小为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线C1的方程为y=x2,它的焦点F关于原点的对称点为E.若曲线C2上的点到E、F的距离之差的绝对值等于6,则曲线C2的标准方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,若双曲线=1的离心率为,则m的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

无论为任何实数,直线与双曲线恒有公共点.
(1)求双曲线的离心率的取值范围;
(2)若直线过双曲线的右焦点,与双曲线交于两点,并且满足,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线,离心率,右焦点.方程的两个实数根分别为,则点与圆的位置关系(  )
A.在圆外B.在圆上C.在圆内D.不确定

查看答案和解析>>

同步练习册答案