分析 由约束条件前三个不等式作出图形,结合直线x+ay-1=0过定点(1,0),可得约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面区域是一个三角形时直线的倾斜角的范围,进一步得到a的取值范围.
解答 解:由约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$作出可行域如图,![]()
由图可知,直线x+ay-1=0过定点A(1,0),
当直线x+ay-1=0的倾斜角为(90°,135°)时,
约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面区域是一个三角形,
此时直线的斜率小于-1,a的范围为(0,1).
故答案为:(0,1).
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法及数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | (1,3] | C. | [2,3] | D. | (2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±$\sqrt{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{3}{5},2}]$ | B. | $[{0,\frac{12}{5}}]$ | C. | $[{2-\frac{2}{5}\sqrt{5},2+\frac{2}{5}\sqrt{5}}]$ | D. | $[{0,2-\frac{2}{5}\sqrt{5}}]∪[{2+\frac{2}{5}\sqrt{5},4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (1,3) | C. | (0,1)∪(1,3) | D. | $[\frac{3}{2},3)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com