精英家教网 > 高中数学 > 题目详情

已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。

解析试题分析:∵圆心C在直线x-y-1=0上,∴圆心C(a,a-1),又圆
与直线相切,截直线所得弦长为6所以,,解得,,故圆的方程
考点:点到直线的距离公式,圆的标准方程。
点评:中档题,求圆的方程,可以根据条件灵活假设出方程的形式,一般地,涉及圆心、半径时,设标准方程,涉及圆上点的坐标时,设一般形式。本题对计算能力要求较高。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切,
(Ⅰ)求圆的方程;
(Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,
(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线L:与圆C:
(1) 若直线L与圆相切,求m的值。
(2) 若,求圆C 截直线L所得的弦长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在轴上截得线段长为.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线与圆交于两点,记△的面积为(其中为坐标原点).
(1)当时,求的最大值;
(2)当时,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线过定点.
(1)求圆心的坐标和圆的半径
(2)若与圆C相切,求的方程;
(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.

查看答案和解析>>

同步练习册答案