精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为30°,且$|{\overrightarrow a}|$=$\sqrt{3}$,$|{\overrightarrow b}|$=1.
(1)求$\overrightarrow a•\overrightarrow b$;
(2)求$|{\overrightarrow a-\overrightarrow b}|$的值;
(3)如图,设向量$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AC}=\overrightarrow p,\overrightarrow{DB}=\overrightarrow q$,求向量$\overrightarrow p$在$\overrightarrow{q}$方向上的投影.

分析 (1)直接由已知结合数量积公式求解;
(2)利用$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=(\overrightarrow{a}-\overrightarrow{b})^{2}$,等式右边展开后代入数量积得答案;
(3)由$\overrightarrow{p}=\overrightarrow{a}+\overrightarrow{b},\overrightarrow{q}=\overrightarrow{a}-\overrightarrow{b}$,代入投影公式化简即可.

解答 解:向量$\overrightarrow a$与$\overrightarrow b$的夹角为30°,且$|{\overrightarrow a}|$=$\sqrt{3}$,$|{\overrightarrow b}|$=1.
(1)$\overrightarrow a•\vec b=|{\overrightarrow a}|•|{\vec b}|cos{30°}=\sqrt{3}×1×\frac{{\sqrt{3}}}{2}=\frac{3}{2}$;
(2)$|{\overrightarrow a-\vec b}|=\sqrt{{{({\overrightarrow a-\vec b})}^2}}=\sqrt{{{\overrightarrow a}^2}-2\overrightarrow a•\vec b+{{\vec b}^2}}=\sqrt{3-3+1}=1$;
(3)∵$\overrightarrow{p}=\overrightarrow{a}+\overrightarrow{b},\overrightarrow{q}=\overrightarrow{a}-\overrightarrow{b}$,
∴$\frac{\vec p•\vec q}{{|{\vec q}|}}=\frac{{{{\overrightarrow a}^2}-{{\vec b}^2}}}{{\sqrt{(\overrightarrow a-\vec b{)^2}}}}=\frac{3-1}{{\sqrt{{{\overrightarrow a}^2}-2\overrightarrow a•\vec b+{{\vec b}^2}}}}=\frac{2}{{\sqrt{3-3+1}}}=2$.

点评 本题考查平面向量的数量积运算,考查向量模的求法,对于(3)的求解,需要掌握向量在向量方向上的投影的概念,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.函数f(x)=loga(x-4)-1(a>0,a≠1)所经过的定点为(m,n),圆C的方程为(x-m)2+(y-n)2=r2(r>0),直线$\sqrt{3}x+y+1-2\sqrt{3}=0$被圆C所截得的弦长为$\sqrt{73}$.
(1)求m、n以及r的值;
(2)设点P(2,-1),探究在直线y=-1上是否存在一点B(异于点P),使得对于圆C上任意一点T到P,B两点的距离之比$\frac{{|{TB}|}}{{|{TP}|}}=k$(k为常数).若存在,请求出点B坐标以及常数k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,平面内有三个向量$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,且$|\overrightarrow{OA}|=2,|\overrightarrow{OC}|=4\sqrt{3}$,若$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,则λ=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数g(x)满足g(x)=g′(1)ex-1-g(0)x+$\frac{1}{2}{x}^{2}$,且存在实数x0使得不等式2m-1≥g(x0)成立,则m的取值范围为(  )
A.(-∞,2]B.(-∞,3]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow a=({m,n}),\overrightarrow b=({s,t})$,定义两个向量$\overrightarrow a,\overrightarrow b$之间的运算“?”为$\overrightarrow a?\overrightarrow b=({ms,nt})$,若向量$\overrightarrow p=({1,2}),\overrightarrow p?\overrightarrow q=({-3,-4})$,则向量$\overrightarrow q$=(-3,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l经过两条直线l1:3x+4y-2=0与l2:2x+y+2=0的交点P.
(1)求垂直于直线l3:x-2y-1=0的直线l的方程;
(2)求与坐标轴相交于两点,且以P为中点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在空间直角坐标系O-xyz中,点A(1,2,3)关于z轴的对称点为(  )
A.(-1,-2,3)B.(-1,2,3)C.(-1,-2,-3)D.(1,2,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.若命题p:?x∈R,x2-2x-1>0,则命题¬p:?x∈R,x2-2x-1<0
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.“b2=ac”是“a,b,c成等比数列”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知两个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$都是单位向量,其夹角为60°,又$\overrightarrow{OA}$$•\overrightarrow{OC}$=0.且$\overrightarrow{OC}$=$t\overrightarrow{OA}$$+(1-t)\overrightarrow{OB}$,则t=-1.

查看答案和解析>>

同步练习册答案