精英家教网 > 高中数学 > 题目详情
19.如图三棱柱ABC-A1B1C1中,点M为AB的中点.
(Ⅰ)求证:BC1∥平面A1CM;
(Ⅱ)若CA=CB,A1在平面ABC的射影为M,求证:平面A1CM⊥平面ABB1 A1

分析 (Ⅰ)根据线面平行的判定定理即可证明BC1∥平面A1CM;
(Ⅱ)根据面面垂直的判定定理即可证明平面A1CM⊥平面ABB1 A1

解答 证法一:(I)连接AC1交A1C于点N,则N为A1C的中点.…(1分)
∵M为AB的中点,
∴MN∥BC1.…(3分)
又∵MN?平面A1CM,…(4分)BC1?平面A1CM,…(5分)
∴BC1∥平面A1CM.…(6分)
( II)∵CA=CB,M为AB的中点,
∴CM⊥AB. …(7分)
∵A1在平面ABC的射影为M,
∴A1M⊥平面ACB,…(8分)
∴A1M⊥AB,…(9分)
又CM∩A1M=M,
∴AB⊥平面A1CM,…(10分)
又AB?平面ABB1A1,…(11分)
∴平面A1CM⊥平面ABB1A1.…(12分)
证法二:( I)取A1B1中点N,连结BN,C1N,…(1分)
∵M为AB的中点,
∴A1N=MB,A1N∥MB
∴四边形A1MBN为平行四边形,
∴BN∥A1M.…(2分)
同理可得C1N∥CM,
又C1N?平面A1CM,CM?平面A1CM,…(3分)
∴C1N∥平面A1CM.…(4分)
同理BN∥平面A1CM.
∵C1N∩BN=N,
∴平面BC1N∥平面A1CM,…(5分)
∵BC1?平面BC1N,
∴BC1∥平面A1CM. …(6分)
( II)∵CA=CB,M为AB的中点,
∴CM⊥AB. …(7分)
∵A1在平面ABC的射影为M,
∴A1M⊥平面ACB,…(8分)
∴A1M⊥AB,…(9分)
又CM∩A1M=M,
∴AB⊥平面A1CM,…(10分)
又AB?平面ABB1A1,…(11分)
∴平面A1CM⊥平面ABB1A1.…(12分)

点评 本题主要考查空间线与线、线与面、面面的位置关系等基础知识;考查空间想象能力、推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.要在一个半径为R的半圆形铁板中截取一块面积最大的矩形ABCD,问应如何截取,并求此矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的三边a、b、c所对的角分别为A、B、C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC的面积为45$\sqrt{3}$,求△ABC的外接圆半径的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=1,
则四面体A-EFB的体积V=$\frac{{\sqrt{2}}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则下列命题正确的是(  )
A.函数f(x)=$\frac{4}{x}$+x是(1,+∞)上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)
D.若函数f(x)=sinx+ax为[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$级类增函数,则实数a的取值范围为[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知三棱锥P-ABC的底面是边长为3的正三角形ABC,PA与平面ABC所成角为60°,且PA=2,若点Q满足$\overrightarrow{PQ}$=$\frac{1}{4}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$),则三棱锥Q-ABC的体积为$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图是一个长方体ABCD-A1B1C1D1被一个平面截去一部分后,所得多面体的直观图,已知AB=6,AD=AA1=4,BE=CF=2.
(Ⅰ)若点M的棱DD1的中点,求证:BM∥平面A1EFD;
(Ⅱ)求此多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,正方形ABCD的边长为1,正方形ADEF所在平面与平面ABCD互相垂直,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE;
(3)求三棱锥A-BCG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:sin50°+$\sqrt{3}$tan10°cos40°.

查看答案和解析>>

同步练习册答案