精英家教网 > 高中数学 > 题目详情
如图,AB是⊙O的一条直径,过A作⊙O的切线,在切线上取一点C,使AC=AB,连接OC,与⊙O交于点D,BD的延长线与AC交于点E,求证:
(Ⅰ)∠CDE=∠DAE;
(Ⅱ)AE=CD.
考点:与圆有关的比例线段,弦切角
专题:直线与圆
分析:(Ⅰ)由已知条件,利用弦切角定理能证明∠CDE=∠DAE. 
(Ⅱ)由已知条件,推导出△CDE∽△CAD,进而得到△ADE∽△BAE,由此能够证明AE=CD.
解答: 证明:(Ⅰ)如图,∵∠CDE=∠ODB=∠OBD,
AC与⊙O切于点A,AD是弦,
∴∠DAE=∠OBD
∴∠CDE=∠DAE. …(5分)
(Ⅱ)∵∠CDE=∠CAD,∠C=∠C,
∴△CDE∽△CAD
CD
AC
=
DE
AD
,∴CD=AC•
DE
AD
…①
而△ADE∽△BAE,∴
DE
AD
=
AE
AB
…②
由①②得CD=AC•
AE
AB

又∵AC=AB,∴AE=CD. …(10分)
点评:本题考查角的相等、线段长相等的证明,是中档题,解题时要注意弦切角定理、相似三角形等知识点的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,点E为边AD上的点,点F为边CD的中点,AB=AE=
2
3
AD
,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ) 求证:平面PBE⊥平面PEF;
(Ⅱ) 求二面角E-PF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(4,0)、与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
(1)求拋物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P且同时与边CD交于点Q.设点A的坐标为(m,n)
①当PO=PF时,分别求出点P和点Q的坐标及PF所在直线l的函数解析式;
②当n=2时,若P为AB边中点,请求出m的值;
(3)若点B在第(2)①中的PF所在直线l上运动,且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)若AD=CD,求证:BD⊥AC;
(Ⅱ)求二面角B-CD-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,如图建立空间直角坐标系.
(Ⅰ)求出平面PCD的一个法向量并证明MN∥平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体P-ABC中,PA⊥平面ABC,AB⊥BC,PA=2,AC=2
2
.AB=
2
.D为PA的中点,M为CD的中点,N为PB上一点,且PN=3BN.
(Ⅰ)求证:MN⊥PA;
(Ⅱ)求二面角B-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的一条直径,C,D是⊙O上不同于A,B的两点,过B作⊙O的切线与AD的延长线相交于点M,AD与BC相交于N点,BN=BM.
(1)求证:∠NBD=∠DBM;
(2)求证:AM是∠BAC的角平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:

有5名志愿者安排在3天服务,每天安排3人,每人至少要服务一天,则有多少种安排方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

有324,243,270三个数,则它们的最大公约数是
 

查看答案和解析>>

同步练习册答案