精英家教网 > 高中数学 > 题目详情
已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)若AD=CD,求证:BD⊥AC;
(Ⅱ)求二面角B-CD-A的正切值.
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由已知条件能推导出△ADB≌△CDB,从而得到AC⊥平面BDM,由此能够证明AC⊥BD.
(Ⅱ)过点A作AH⊥BD交BD延长线于H,过H作HG⊥CD于G,连结GA,由三垂线定理推导出∠AGH为二面角A-CD-H的平面角,由此能求出二面角B-CD-A的正切值.
解答: (Ⅰ)证明:∵AD=DC,∠ADB=∠CDB=120°,BD=BD,
∴△ADB≌△CDB,∴AB=BC,
取AC中点M,则MB⊥AC,DM⊥AC,
∴AC⊥平面BDM,
∵BD?平面BDM,
∴AC⊥BD.(4分)
(Ⅱ)解:过点A作AH⊥BD交BD延长线于H,
过H作HG⊥CD于G,连结GA,
∵平面ABD⊥平面BCD,
∴AH⊥平面BCD,∴AH⊥CD
根据三垂线定理知,
∠AGH为二面角A-CD-H的平面角
由已知可知∠ADH=60°,
设AD=2a,则AH=
3
a,HD=a

在Rt△HDG中,∵∠HDG=60°,∴HG=
3
2
a

∴tan∠AGH=2,
∴二面角B-CD-A的正切值为-2.(10分)
注:用空间向量做,酌情给分.
点评:本题考查异面直线垂直的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点p(k,m)在以 A(1,2 )、B(1,0)、C(-1,0)为顶点的三角形周界上运动,求抛物线y=x2-2kx+m 的顶点轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,点C是圆O上不同于A、B的一点,∠BAC=45°,点V是圆O所在平面外一点,且VA=VB=VC,E是AC的中点.
(Ⅰ)求证:OE∥平面VBC;
(Ⅱ)求证:VO⊥面ABC;
(Ⅲ)已知θ是平面VBC与平面VOE所形成的二面角的平面角,且0°<θ<90°,若OA=OV=1,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C得如图2四棱锥D′-ABCM.
(1)求证:平面D′EF⊥平面AMCB;
(2)若∠D′EF=
π
3
,直线D′F与平面ABCM所成角的大小为
π
3
,求直线AD′与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求直线DH与平面BDEF所成角的正弦值;
(Ⅲ)求二面角H-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+1)2+y2=16,点C2(1,0),点Q在圆C1上运动,QC2的垂直平分线交QC1于点H.
(Ⅰ)求动点H的轨迹C的方程;
(Ⅱ)若曲线C与x轴交于A、B两点,过点C1的直线交曲线C于M、N两点,记△ABM与△ABN的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的一条直径,过A作⊙O的切线,在切线上取一点C,使AC=AB,连接OC,与⊙O交于点D,BD的延长线与AC交于点E,求证:
(Ⅰ)∠CDE=∠DAE;
(Ⅱ)AE=CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,且AB=BC=2,点N为B1C1的中点,点P在棱A1C1的运动
(1)试问点P在何处时,AB∥平面PNC,并证明你的结论;
(2)在(1)的条件下,且AA1<AB,直线B1C与平面BCP的成角的正弦值为
10
10
,求二面角A-BP-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,m为正整数,若a和b除以m的余数相同,则称a和b对m同余.记a≡b(mod m),已知a=2+2×3+2×32+…+2×32003,b≡a(mod3),则b的值可以是
 
(写出以下所有满足条件的序号)
①1007;②2013;③3003;④6002.

查看答案和解析>>

同步练习册答案