(本小题满分13分)
已知R,函数.
(1)求的单调区间;
(2)证明:当时,.
科目:高中数学 来源: 题型:解答题
(12分)定义在上的函数,,当时,.且对任意的有。
(1)证明:;
(2)证明:对任意的,恒有;
(3)证明:是上的增函数;
(4)若,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是由满足下述条件的函数构成的集合:对任意,
① 方程有实数根;② 函数的导数满足.
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com