精英家教网 > 高中数学 > 题目详情
16.若$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\ \frac{1}{x},x>0\end{array}\right.$,则f(f(-2))=9.

分析 先求出f(-2)=3-2=$\frac{1}{9}$,从而f(f(-2))=f($\frac{1}{9}$),由此能求出函数值.

解答 解:∵$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\ \frac{1}{x},x>0\end{array}\right.$,
∴f(-2)=3-2=$\frac{1}{9}$,
∴f(f(-2))=f($\frac{1}{9}$)=$\frac{1}{\frac{1}{9}}$=9.
故答案为:9.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax3-5x2-bx,a,b∈R,x=3是f(x)的极值点,且f(1)=-1.
(1)求实数a,b的值;
(2)求f(x)在[2,4]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,若不等式f(a)≥f(x)对任意x∈[1,2]恒成立,则实数a的取值范围是(  )
A.(-∞,1]B.[-1,1]C.(-∞,2]D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\sqrt{3}sin(2x+φ)+cos(2x+φ)(|φ|<\frac{π}{2})$为偶函数,则(  )
A.f(x)的最小正周期为π,且在$(0,\frac{π}{2})$上为增函数
B.f(x)的最小正周期为$\frac{π}{2}$,且在$(0,\frac{π}{4})$上为增函数
C.f(x)的最小正周期为$\frac{π}{2}$,且在$(0,\frac{π}{4})$上为减函数
D.f(x)的最小正周期为π,且在$(0,\frac{π}{2})$上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ>0),且a1,a2+2,a3+3成等差数列.
(I)求数列{an}的通项公式;
(II)令bn=(-1)nlog2an•log2an+1,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,以椭圆C的上顶点T为圆心作圆T:x2+(y-1)2=r2(r>0),圆T与椭圆C在第一象限交于点A,在第二象限交于点B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{TA}•\overrightarrow{TB}$的最小值,并求出此时圆T的方程;
(Ⅲ)设点P是椭圆C上异于A,B的一点,且直线PA,PB分别与Y轴交于点M,N,O为坐标原点,求证:|OM|•|ON|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某企业节能降耗技术改造后,在生产某产品过程中的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如表所示:
x3456
y2.5344.5
若根据表中数据得出y关于x的线性回归方程为y=0.7x+a,若生产7吨产品,预计相应的生产能耗为(  )吨.
A.5.25B.5.15C.5.5D.9.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sinx+x-1的图象在x=0处的切线方程为y=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lnx-3x,则曲线y=f(x)在点(1,f(1))处的切线方程是2x+y+1=0.

查看答案和解析>>

同步练习册答案