精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和Sn=$\frac{3{n}^{2}-n}{2}$,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,设数列{bn}前n项和为Gn,求证:Gn$<\frac{1}{3}$.

分析 (1)数列{an}的前n项和Sn=$\frac{3{n}^{2}-n}{2}$,n∈N*.利用a1=S1,当n≥2时,an=Sn-Sn-1,即可得出;
(2)bn=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和”、“放缩法”即可得出.

解答 (1)解:∵数列{an}的前n项和Sn=$\frac{3{n}^{2}-n}{2}$,n∈N*
∴a1=S1=$\frac{3-1}{2}$=1,当n≥2时,an=Sn-Sn-1=$\frac{3{n}^{2}-n}{2}$-$\frac{3(n-1)^{2}-(n-1)}{2}$=3n-2,
当n=1时上式也成立,
∴an=3n-2.
(2)证明:bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴设数列{bn}前n项和为Gn=$\frac{1}{3}[(1-\frac{1}{4})+(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{1}{3}$$(1-\frac{1}{3n+1})$<$\frac{1}{3}$,
∴Gn$<\frac{1}{3}$.

点评 本题考查了数列递推式的应用、“裂项求和”、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),椭圆的左右焦点F1,F2与其短轴的端点构成等边三角形,且满足a2=4c(c是椭圆C的半焦距).
(1)求椭圆C的方程;
(2)设直线l:3x-2y=0与椭圆C在x轴上方的一个交点为P,F是椭圆的右焦点,试探究以PF为直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某地近几年粮食需求量逐年上升,下表是部分统计数据:
年份20062008201020122014
年需求量(万吨)257276298298318
(1)利用所给数据求年需求量与年份之间的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以下个数有可能是五进制数的是(  )
A.15B.106C.731D.21340

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a>0,b>0,且a+b=2,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.1B.2C.4D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在三角形ABC中,AB=$\frac{5}{2}$,BC=3,sinC=$\frac{1}{2}$,则角C等于30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点A(0,2),B(-2,2),且圆心在直线x-y-2=0上的圆的方程是(  )
A.(x-1)2+(y+1)2=26B.(x+1)2+(y+3)2=26C.(x+2)2+(y+4)2=26D.(x-2)2+y2=26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,正方形ABCD所在平面外有一点P,PA⊥平面ABCD,若PA=AB,则平面PAB与平面PCD所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在2014“双11购物节”到来之际,某公司对员工在当天的网购计划进行了调查,数据绘成表格如下:
计划购物情况没有计划购物计划购物1000元以内(不含1000元)计划购物1000元以上(含1000元)
所占比例 $\frac{1}{5}$ $\frac{2}{3}$ x
若公司准备采用分成抽样的方式抽取其中的若干人进行座谈,已知每位员工被抽到的概率均为$\frac{1}{20}$,且“计划购物1000元以上”者抽取的人数为4人,则该公司员工总数为(  )
A.100B.200C.300D.600

查看答案和解析>>

同步练习册答案