精英家教网 > 高中数学 > 题目详情
12.由正整数构成的数列{an},满足a1=1,a8=262,且an+1>an+2n其中(n=1,2,…,7),求数列的前8项和是多少?

分析 通过an+1>an+2n、a8=262可知a7<a8-27=134,同理:a6≤68,a5≤35,a4≤18,a3≤9,a2≤4,另一方面通过a2>a1+21=3可确定a2=4,同理可得其他各项的值,进而可得结论.

解答 解:∵an+1>an+2n,a8=262,
∴a7<a8-27=262-128=134,
∴a7≤133,
同理:a6≤68,a5≤35,a4≤18,a3≤9,a2≤4,
又∵a2>a1+21=3,
∴a2=4,
同理:a3=9,a4=18,a5=35,a6=68,a7=133,
∴a1+a2+a3+a4+a5+a6+a7+a8
=1+4+9+18+35+68+133+262
=530.

点评 本题考查数列的求和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.$sin\frac{10π}{3}$的值是-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用反证法证明命题:“若(a-1)(b-1)(c-1)>0,则a,b,c中至少有一个大于1”时,下列假设中正确的是(  )
A.假设a,b,c都大于1B.假设a,b,c中至多有一个大于1
C.假设a,b,c都不大于1D.假设a,b,c中至多有两个大于1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{2}$+y2=1的左右焦点分别为F1、F2,直线l过椭圆的右焦点F2与椭圆交于A、B两点.
(1)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为$\frac{2\sqrt{5}-2}{3}$的点P有几个?并说明理由;
(2)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E是PD的中点.
(1)证明:PB∥平面AEC;
(2)设$AP=1,AD=\sqrt{3}$,三棱锥P-ABD的体积$V=\frac{{\sqrt{3}}}{4}$,求AC与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用红,黄,蓝,绿,黑这5种颜色给如图所示的四连圆涂色,要求相邻两个圆所图颜色不能相同,红色至少要涂两个圆,则不同的涂色方案种数为(  )
A.28B.32C.44D.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.动点M作匀速直线运动,它在x轴和y轴方向的分速度分别为9和12,运动开始时,点M位于A(1,1),求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用0,1,2,3,4,5这六个数字
(1)组成多少个无重复数字的五位奇数?
(2)可组成多少个无重复数字的能被5整除的五位数?
(3)可组成多少个无重复数字的且大于31250的五位数?
(4)可组成多少个无重复数字的能被3整除的五位数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x3+x-3的实数解落在的区间是(  )
A.[0,1]B.[1,2]C.[2,3]D.[3,4]

查看答案和解析>>

同步练习册答案