精英家教网 > 高中数学 > 题目详情
3.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切.
(I)求圆C的方程;
(Ⅱ)过点P(0,1)作倾斜角互补的两条直线,分别与圆C相交A、B两点.试判断直线AB的斜率是否为定值,并说明理由.

分析 (I)求出直线x-y+1=0与x轴的交点即为圆心C坐标,求出点C到直线x+y+3=0的距离即为圆的半径,写出圆的标准方程即可.
(Ⅱ)求出A,B的坐标,利用斜率公式,即可得出结论.

解答 解:(I)对于直线x-y+1=0,令y=0,得到x=-1,即圆心C(-1,0),
∵圆心C(-1,0)到直线x+y+3=0的距离d=$\frac{|-1+0+3|}{\sqrt{2}}$=$\sqrt{2}$,
∴圆C半径r=$\sqrt{2}$,
则圆C方程为(x+1)2+y2=2;
(Ⅱ)设A(x1,y1),B(x2,y2),设PA的方程为y=kx+1,
代入(x+1)2+y2=2化简得:(k2+1)x2+(2+2k)x=0,
∴x1=-$\frac{2+2k}{{k}^{2}+1}$,
用-k代替x1,y1中的k,得x2=-$\frac{2-2k}{{k}^{2}+1}$,
∴直线AB的斜率k=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{-k({x}_{1}+{x}_{2})}{{x}_{2}-{x}_{1}}$=1为定值.

点评 此题考查了圆的标准方程,涉及的知识有:一次函数与x轴的交点,点到直线的距离公式,以及直线与圆的位置关系,求出圆心坐标与半径是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知纸片Rt△ABC中,AB=AC=1,过顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触)使AD垂直于桌面,且二面角B-AD-C为直二面角.
(1)求VD-ABC
(2)求四面体D-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.有下列三种说法:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“p∨q为真”是“¬p为假”的必要不充分条件;
③在区间[0,π]上随机取一个数x,则事件“sinx≥$\frac{1}{2}$”发生的概率是$\frac{5}{6}$.
其中正确说法的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.加图所示,一个空间几何体的主视图和左视图都是边长为3的正方形,俯视图是一个直径为3的圆,那么这个几何体的全面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点P在△ABC内(不含边界),且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则$\frac{y+1}{x+2}$的取值范围为(  )
A.($\frac{1}{3}$,1)B.($\frac{1}{2}$,1)C.($\frac{2}{3}$,1)D.($\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A,B,O三点不共线,若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A满足sinAcosA=-$\frac{1}{8}$,则sinA-cosA=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,P是直线x=a上一点,且PF1⊥PF2,|PF1|+|PF2|=2$\sqrt{2}$a,则双曲线的离心率是(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案