精英家教网 > 高中数学 > 题目详情
7.在△ABC中,a、b、c分别为A、B、C的对边,a=$\sqrt{6}$,b=4,2cos2AsinB=(2-cosB)sin2A.
(1)求c的值;
(2)求△ABC的面积.

分析 (1)展开等式右边的二倍角正弦,约分后移项,利用两角和的正弦化简,再由已知结合正弦定理得答案;
(2)利用余弦定理求出cosC,再由平方关系求得sinC,代入面积公式求得△ABC的面积.

解答 解:(1)由2cos2AsinB=(2-cosB)sin2A,得
2cos2AsinB=2(2-cosB)sinAcosA,即sinAcosB+cosAsinB=2sinA,
∴sin(A+B)=2sinA,
∴sinC=2sinA,
又a=$\sqrt{6}$,
∴c=a•$\frac{sinC}{sinA}$=$\sqrt{6}×2=2\sqrt{6}$;
(2)∵a=$\sqrt{6}$,b=4,c=$2\sqrt{6}$,
∴$cosC=\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{(\sqrt{6})^{2}+{4}^{2}-(2\sqrt{6})^{2}}{2×\sqrt{6}×4}$=$-\frac{\sqrt{6}}{24}$,
∴sinC=$\sqrt{1-(-\frac{\sqrt{6}}{24})^{2}}$=$\frac{\sqrt{570}}{24}$.
∴${S}_{△ABC}=\frac{1}{2}ab•sinC=\frac{1}{2}×\sqrt{6}×4×\frac{\sqrt{570}}{24}$=$\frac{\sqrt{95}}{2}$.

点评 本题考查同角三角函数的恒等变换应用,考查三角形的解法,训练了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2-3ρ-4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,△BCD内接于⊙O,过B作⊙O的切线AB,点C在圆上,∠ABC的角平分线BE交圆于点E,且DB⊥BE.求证:DB=DC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知变换T:$[\begin{array}{l}{x}\\{y}\end{array}]$→$[\begin{array}{l}{{x}^{′}}\\{y′}\end{array}]$=$[\begin{array}{l}{x+2y}\\{y}\end{array}]$,试写出变换T对应的矩阵A,并求出其逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,$\widehat{AE}$=$\widehat{AC}$,DE交AB于点F,且AB=2BP=8,
(1)求PF的长度;
(2)若圆F与圆O 内切,直线PT与圆F切于点T,求线段PT的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如表:
(1)完成表格,并判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(2)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为X,求X的公布列及数学期望E(X).
男性公务员女性公务员总计
有意愿生二胎3015
无意愿生二胎2025
总计
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=lnx-x零点的个数为(  )
A.无穷多B.3C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线y=$\frac{1}{2}$x与双曲线$\frac{x^2}{9}-\frac{y^2}{4}$=1交于A,B两点,P为双曲线上不同于A,B的点,当直线PA,PB的斜率kPA,kPB存在时,kPA•kPB等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.与P的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合A={(x,y)|(x+3)2+(y-4)2=5},B={(x,y)|(x+3)2+(y-4)2=20},C={(x,y)|2|x+3|+|y-4|=λ},若(A∪B)∩C≠∅,则实数λ的取值范围是[$\sqrt{5}$ 10].

查看答案和解析>>

同步练习册答案