精英家教网 > 高中数学 > 题目详情
19.已知两点$A(\sqrt{3},0),C(-\sqrt{3},0)$,若一动点Q在运动过程中总满足|AQ|+|CQ|=4,O为坐标原点.
(1)当点P在圆上运动时,求点Q的轨迹E的方程.
(2)设过点B(0,-2)的直线与E交于M,N两点,当△OMN的面积为1时,求此直线的方程.

分析 (1)由椭圆定义知Q点的轨迹是椭圆,由此能求出点Q的轨迹E的方程.
(2)设直线为:y=kx-2,将y=kx-2代入椭圆方程,(1+4k2)x2-16kx+12=0.由此利用根的判断式、韦达定理、弦长公式,结合已知条件能求出直线方程.

解答 解:(1)由题意知|PQ|=|AQ|,又∵|CP|=|CQ|+|PQ|=4…(2分)
∴|CQ|+|AQ|=4》|AC|=2$\sqrt{3}$,
由椭圆定义知Q点的轨迹是椭圆,…(4分)
2a=4,即a=2,2c=2$\sqrt{3}$,即c=$\sqrt{3}$,
∴b2=4-3=1,
∴点Q的轨迹E的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.…(6分)
(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx-2,…(7分)
M(x1,y1),N(x2,y2),
将y=kx-2代入$\frac{x^2}{4}+{y^2}=1中得$(1+4k2)x2-$16kx+12=0,△>0得{k^2}>\frac{3}{4}$.
∴${x_1}+{x_2}=\frac{16k}{{1+4{k^2}}},{x_1}{x_2}=\frac{12}{{1+4{k^2}}}$…(8分)
$又∵{S_{△OMN}}=\frac{1}{2}•|{OB}|•$|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{4{k}^{2}-3}}{1+4{k}^{2}}$=1.…(10分)
解得k=$±\frac{\sqrt{7}}{2}$,满足△>0.∴$所求的直线方程为y=±\frac{{\sqrt{7}}}{2}x$-2.…(12分)

点评 本题考查点的轨迹方程的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意根的判断式、韦达定理、弦长公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义在R上的奇函数,且满足f(x+3)=f(x-3),则f(3)+f(6)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知F1,F2是双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1\;(a>0,b>0)$的下,上焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A,F分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和右焦点(O为坐标原点),P为椭圆上异于点A的点,且$\overrightarrow{PA}$•$\overrightarrow{PF}$=0,设椭圆的离心率为e,直线PA的斜率k>0.
(1)求证:$\frac{1}{2}$<e<1;
(2)若e=2k2,求直线OP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y2=2px的焦点为F,准线方程是x=-1.
(I)求此抛物线的方程;
(Ⅱ)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其右焦点F(1,0),离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线x-y+m=0与椭圆C交于不同的两点A,B,且线段AB的中点不在圆x2+y2=$\frac{5}{9}$内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若经过点(3,a)、(-2,0)的直线与经过点(3,-4)且斜率为$\frac{1}{2}$的直线垂直,则a的值为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.广丰一中现有职工180人,其中高级职称42人,中级职称78人,一般职员60人,现抽取30人进行分层抽样,则各职称人数分别为(  )
A.5,15,10B.3,18,9C.7,13,10D.5,16,9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠CAB=∠CBA=30°,AC,BC边上的高分别为BD,AE,则以A,B为焦点,且过D,E两点的椭圆离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{3}$-1D.$\sqrt{2}$-1

查看答案和解析>>

同步练习册答案