精英家教网 > 高中数学 > 题目详情
10.如图所示,已知在梯形ABCD中,AB∥CD,且AB=3CD,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$.

分析 $\overrightarrow{DC}=\frac{1}{3}\overrightarrow{AB}$,根据三角形法则得出.

解答 解:∵AB∥CD,且AB=3CD,∴$\overrightarrow{DC}$=$\frac{1}{3}\overrightarrow{AB}$.
∴$\overrightarrow{AC}$=$\overrightarrow{AD}$+$\overrightarrow{DC}$=$\overrightarrow{AD}+\frac{1}{3}\overrightarrow{AB}$=$\frac{1}{3}\overrightarrow{a}+\overrightarrow{b}$.

点评 本题考查了向量运算的三角形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.利用定积分的几何意义,比较${∫}_{0}^{1}$exdx,${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-3$\sqrt{2}$x2+3x+1,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若f(x)的图象关于y轴对称,且有${∫}_{0}^{6}$f(x)dx=3,则${∫}_{-6}^{6}$f(x)dx=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若钝角三角形ABC的三个内角满足:∠A<∠B<∠C,2∠B=∠A+∠C,且最大边长与最小边长的比值为m,则m的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=$\frac{1}{\sqrt{x-2}}$+log2(x2+4x-5)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}中,an<an+1(n∈N*),且a1+an=66,a1•an=128,前n项的和Sn=126,n求公比q及项数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知O(0,0,0),A(2,1,1),B(1,1,-1),点P(λ,1,3)在平面OAB内,则λ=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{{e}^{x}}{x}$+$\frac{a}{x}$+b,g(x)=kx,曲线y=f(x)在点(1,f(1))处的切线方程为x-y+e-3=0(e为自然对数的底数)
(Ⅰ)求a,b;
(Ⅱ)若x>0时,f(x)>g(x),求k的取值范围.

查看答案和解析>>

同步练习册答案