精英家教网 > 高中数学 > 题目详情
过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程是(  )
A、(x-5)2+y2=2
B、(x-3)2+y2=4
C、(x-5)2+y2=4
D、(x-3)2+y2=2
考点:圆的标准方程
专题:计算题,直线与圆
分析:求出直线x-y-1=0的斜率,利用两直线垂直时斜率的乘积为-1求出过点B的直径所在直线方程的斜率,求出此直线方程,根据直线方程设出圆心C坐标,根据|AC|=|BC|,利用两点间的距离公式列出方程,求出方程的解确定出C坐标,进而确定出半径,写出圆的方程即可.
解答: 解:∵直线x-y-1=0的斜率为1,
∴过点B直径所在直线方程斜率为-1,
∵B(2,1),
∴此直线方程为y-1=-(x-2),即x+y-3=0,
设圆心C坐标为(a,3-a),
∵|AC|=|BC|,即
(a-4)2+(3-a-1)2
=
(a-2)2+(2-a)2

解得:a=3,
∴圆心C坐标为(3,0),半径为
2

则圆C方程为(x-3)2+y2=2.
故选:D.
点评:此题考查了圆的标准方程,涉及的知识有:两点间的距离公式,两直线垂直时斜率满足的关系,求出圆心坐标与半径是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当a=1时,求y=2x-
a
x
在(0,1]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:sin(α+β)cos(α-β)=sinαcosα+sinβcosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y>0,且x+2y=2,则
1
x
+
1
y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log
1
2
x,
x>0
2xx≤0
,若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=1,且an=an+1+2,则该数列的通项公式是(  )
A、2n-1B、2n+1
C、1-2nD、3-2n

查看答案和解析>>

科目:高中数学 来源: 题型:

下列大小关系,正确的是(  )
A、23.4<24.3
B、log20.8>log21.8
C、1.53>1.63
D、1.70.3<0.93.1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于曲线y=f(x),若存在直线l使得曲线y=f(x)位于直线l的同一侧,则称曲线y=f(x)为半面曲线,下列曲线中是半面曲线的序号为
 
.(填上所有正确的序号)
①y=
1
x
 ②y=x3  ③y=x4+x3 ④y=x+
1
x
 ⑤y=1-x2+xsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

“x=-1”是“x2=1”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案