精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥S-ABCD中,四边形为ABCD矩形,E为SA的中点,SA=SB,AB=2$\sqrt{3}$,BC=3.
(1)证明:SC∥平面BDE;
(2)若BC⊥SB,求三棱锥C-BDE的体积.

分析 (1)连接AC,设AC∩BD=O,由题意可得O为AC的中点,又E为AS的中点,由三角形中位线定理可得SC∥OE,再由线面平行的判定可得SC∥平面BDE;
(2)过E作EH⊥AB,垂足为H,由线面垂直的判定可得BC⊥平面SAB,则EH⊥BC,又EF⊥AB,得到EH⊥平面ABCD,在△SAB中,取AB中点M,连接SM,则SM⊥AB,求得SM=1.进一步可得EH=$\frac{1}{2}SM=\frac{1}{2}$.再求出三角形BCD的面积利用等体积法求得三棱锥C-BDE的体积.

解答 (1)证明:连接AC,设AC∩BD=O,
∵四边形ABCD为矩形,则O为AC的中点,
在△ASC中,E为AS的中点,∴SC∥OE,
又OE?平面BDE,SC?平面BDE,
∴SC∥平面BDE;
(2)解:过E作EH⊥AB,垂足为H,
∵BC⊥AB,且BC⊥SB,AB∩SB=B,
∴BC⊥平面SAB,
∵EH?平面ABS,∴EH⊥BC,又EF⊥AB,AB∩BC=B,
∴EH⊥平面ABCD,
在△SAB中,取AB中点M,连接SM,则SM⊥AB,
∴SM=1.
∵EH∥SM,EH=$\frac{1}{2}SM=\frac{1}{2}$.
∴${S}_{△BCD}=\frac{1}{2}×3×2\sqrt{3}=3\sqrt{3}$.
∴VC-BDE=VE-BCD=$\frac{1}{3}{S}_{△BCD}•EH=\frac{1}{3}×3\sqrt{3}×\frac{1}{2}=\frac{\sqrt{3}}{2}$.
∴三棱锥C-BDE的体积为$\frac{\sqrt{3}}{2}$.

点评 本题主要考查直线与平面的位置关系,空间几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.将$\root{3}{2\sqrt{2}}$化为分数指数幂的形式为(  )
A.${2}^{\frac{1}{2}}$B.${2}^{\frac{1}{3}}$C.${2}^{\frac{5}{6}}$D.${2}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足$\frac{x-3}{x-2}$<0.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点(0,4)且与抛物线y2=8x只有一个公共点的直线共有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线ny2=x(n>0)的准线与圆x2+y2-8x-4y-5=0相切,则n的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知 $a={({\frac{1}{3}})^3},b={x^3},c=lnx$,当x>2时,a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线${C_1}:{x^2}=4y$的焦点F也是椭圆${C_2}:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的一个焦点,C1与C2的公共弦的长为$2\sqrt{6}$.
(1)求椭圆C2的方程;
(2)经过点(-1,0)作斜率为k的直线l与曲线C2交于A,B两点,O是坐标原点,是否存在实数k,使O在以AB为直径的圆外?若存在,求k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=loga|x|有六个不同的根,则a的范围为(  )
A.($\sqrt{6}$,$\sqrt{10}$)B.($\sqrt{6}$,2$\sqrt{2}$)C.(2,2$\sqrt{2}$)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设方程22x-1+x-1=0的根为x1,函数f(x)的零点为x2,若|x1-x2|≤$\frac{1}{4}$,则函数f(x)可以是(  )
A.$f(x)={x^{\frac{1}{2}}}-1$B.f(x)=2x-1C.$f(x)=ln({x-\frac{1}{3}})$D.f(x)=2x-1

查看答案和解析>>

同步练习册答案