精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2$\sqrt{3}$sinθ.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.

分析 (1)直线l的参数方程消去参数t,能求出直线l的普通方程,圆C的方程转化为${ρ}^{2}=2\sqrt{3}ρsinθ$,由此能求出圆C的直角坐标方程.
(2)将l的参数方程代入圆C的直角坐标方程化简整理得:${t}^{2}-2\sqrt{3}t+1=0$,由t的几何意义能求出|PA|+|PB|的值.

解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.,(t为参数)$,
消去参数t,得:x+$\sqrt{3}y$-1=0,
圆C的方程为$ρ=2\sqrt{3}sinθ$,即${ρ}^{2}=2\sqrt{3}ρsinθ$,即${x}^{2}+{y}^{2}=2\sqrt{3}y$,
即${x}^{2}+(y-\sqrt{3})^{2}=3$为圆C的直角坐标方程.
(2)将l的参数方程$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.,(t为参数)$代入圆C的直角坐标方程化简整理得:
${t}^{2}-2\sqrt{3}t+1=0$,由t的几何意义得:
|PA|+|PB|=t1+t2=2$\sqrt{3}$.

点评 本题考查曲线的直线坐标方程、直线的普通方程的求法,考查两线段的之和的求法,是中档题,解题时要认真审题,注意极坐标、直线坐标互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若复数z满足(-3+4i)$\overline{z}$=25i,其中i为虚数单位,则z=(  )
A.4-3iB.4+3iC.-5+3iD.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在R上的函数y=f(x)满足条件f(x+$\frac{3}{2}$)=-f(x),且函数y=f(x-$\frac{3}{4}$)为奇函数,给出以下四个命题:
①函数f(x)是周期函数;
②函数f(x)的图象关于点(-$\frac{3}{4}$,0)对称;
③函数f(x)为R上的偶函数;
④函数f(x)为R上的单调函数;
其中真命题的序号为①②③(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各组函数中,表示同一函数的是(  )
A.f(x)=2log2x,$g(x)={log_2}{x^2}$B.f(x)=|x|,$g(x)={(\sqrt{x})^2}$
C.f(x)=x,$g(x)=lo{g_2}{2^x}$D.f(x)=x+1,$g(x)=\frac{x^2}{x}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:方程x2-2x+m=0有实根,命题q:m∈[-1,5].
(1)当命题p为真命题时,求实数m的取值范围;
(2)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,AB=7,BC=5,CA=6,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{2n-1}的前n项1,3,7,…,2n-1组成集合${A_n}=\left\{{1,3,7,{2^n}-1}\right\}$(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=${2}^{\frac{n(n+1)}{2}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x+1)的图象关于直线x=-1对称,且满足f(x)+f′(x)=2ex,若a=f(-3),b=f(lnπ),c=f(|sinx|),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:x2-5x-6≤0;命题q:x2-6x+9-m2≤0,若¬p是¬q的充分不必要条件,则实数m的取值范围是[-3,3].

查看答案和解析>>

同步练习册答案