精英家教网 > 高中数学 > 题目详情
12.如果向量$\overrightarrow{a}$=(-2,m),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,那么实数m等于(  )
A.-1B.1C.-4D.4

分析 根据向量平行的坐标公式进行求解即可.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴-2×2-m=0,
得m=-4,
故选:C

点评 本题主要考查向量平行的坐标公式的应用,根据相应的坐标公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的2×2列联表:
  做不到“光盘” 能做到“光盘”
 男 45 10
 女 30 15
表:
P(K2≥k)0.100.050.025
k2.7063.8415.024
经计算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性別无关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的可导函数f(x),当x∈(1,+∞)时,(x-1)f′(x)-f(x)<0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=($\sqrt{2}$+1)f($\sqrt{2}$),则a,b,c的大小关系是(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,则m+n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{{{{(a+2i)}^2}}}{i}$,且z对应的点在直线x=4上,则z的虚部为(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在若数列{an}中,若an=$|\begin{array}{l}{\frac{1}{n}}&{\frac{1}{2}}\\{2}&{\frac{1}{n+1}}\end{array}|$,则数列{an}的前n项和Sn=$-\frac{{n}^{2}}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanθ=4,则$\frac{sinθ+cosθ}{sinθ}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.变换T1是绕原点逆时针旋转90°的变换,对应的变换矩阵为M1;变换T2是将点P(x,y)变为P1(2x+y,y),对应的变换矩阵为M2,求点(-1,2)先在变换T1作用下,再在变换T2的作用下点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若将函数y=sin2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后的图象的对称轴方程为(  )
A.x=$\frac{kπ}{2}$$-\frac{7π}{12}$(k∈Z)B.x=$\frac{kπ}{2}$$+\frac{7π}{12}$(k∈Z)C.x=$\frac{kπ}{2}$$-\frac{π}{3}$(k∈Z)D.x=$\frac{kπ}{2}$$+\frac{π}{3}$(k∈Z)

查看答案和解析>>

同步练习册答案